Document Type : Original Article

Authors

Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

Abstract

Purpose: The limited shelf life of Mexican lime fruits when stored under ambient conditions is a significant challenge. The progressive color alteration and loss of freshness can lead to reduced marketability and increased its waste. Research Method: The objective of this research was to preserve the storage quality of Mexican lime fruit by employing chitosan 1.5%, chitosan 1.5% + spirulina algae (Sp) (1%), and Moringa oleifera (Mo) leaf extracts (1%) at 20 ± 2 °C and 50-60% relative humidity for 24 days. Findings: The findings indicated that the samples coated with chitosan + Sp experienced a significantly lower weight loss compared to the control (19.8%) fruit after 24 days of storage, with a weight loss of 16.4%. A significant difference was observed between the control and treated fruit in terms of a* color parameter, with the highest value found in the control group (2.5) and the lowest value found in the chitosan-treated group (-6.7). The treated fruit exhibited significantly higher levels of phenol and flavonoid content compared to the control group. After the 24 days of storage, the chitosan 1.5% + Sp treatment displayed the highest antioxidant activity (88.66%), followed closely by the chitosan + Mo treatment (88.76%), while the control group exhibited the lowest antioxidant activity (78.75%). The treatments exhibited a significant decrease in polyphenol oxidase (PPO) enzyme activity compared to the control group, accompanied by an increase in the activity of peroxidase (POD) and catalase (CAT) enzymes. Research limitations: There was no limitation. Originality/value: Generally, the utilization of chitosan edible coatings, specifically chitosan combined with spirulina algae, has shown promising results in preserving the quality and extending the shelf life of Mexican lime fruit stored at 20 ± 2 °C.

Keywords

Main Subjects

Adhikary, T., Gill, P. P. S., Jawandha, S. K., & Sinha, A. (2022). Chitosan coating modulates cell wall degrading enzymes and preserved postharvest quality in cold-stored pear fruit. Journal of Food Measurement and Characterization, 16(2), 1395–1403. https://doi.org/10.1007/s11694-021-01169-w
Adiletta, G., Di Matteo, M., & Petriccione, M. (2021). Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. International Journal of Molecular Sciences, 22(5), 2633. https://doi.org/10.3390/ijms22052633
Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan coating to preserve the qualitative traits and improve antioxidant system in fresh figs (Ficus carica L.). Agriculture. https://doi.org/10.3390/agriculture9040084
Aebi, H. (1984). Catalase in vitro. In Methods in enzymology, Elsevier. Vol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology, 87, 21–26. https://doi.org/10.1016/j.postharvbio.2013.08.007
Artés, F., Gómez, P. A., & Artés-Hernández, F. (2006). Modified atmosphere packaging of fruits and vegetables. Stewart Postharvest Review, 2(5), 1-13. https://doi.org/10.2212/spr.2006.2.2
Ashoush, I. S., & Mahdy, S. M. (2019). Nutritional evaluation of cookies enriched with different blends of Spirulina platensis and Moringa oleifera leaves powder. Journal of Food and Dairy Sciences, 10(3), 53–60. https://doi.org/10.21608/jfds.2019.36154
Baswal, A. K., Dhaliwal, H. S., Singh, Z., Mahajan, B. V. C., Kalia, A., & S Gill, K. (2020). Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Scientia Horticulturae, 260, 108887. https://doi.org/10.1016/j.scienta.2019.108887
Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Budak, B., & Sarıkaya, S. B. Ö. (2022). Spirulina: properties, benefits and health-nutrition relationship. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi11(4), 1654-1662. https://doi.org/10.37989/gumussagbil.1200004
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748
Ebrahimi, F., & Rastegar, S. (2020). Preservation of mango fruit with guar-based edible coatings enriched with Spirulina platensis and Aloe vera extract during storage at ambient temperature. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109258
Eldib, R., Khojah, E., Elhakem, A., Benajiba, N., & Helal, M. (2020). Chitosan, nisin, silicon dioxide nanoparticles coating films effects on blueberry (Vaccinium myrtillus) quality. Coatings, 10(10), 962. https://doi.org/10.3390/coatings10100962
Esmaeili, A. (2024). Polyphenols for antioxidant application: biochemistry of polyphenols. In Science and engineering of polyphenols: Fundamentals and Industrial Scale Applications. John Wiley & Sons, Inc. 436-451. https://doi.org/10.1002/9781394203932.ch17
Firdous, N., Moradinezhad, F., Farooq, F., & Dorostkar, M. (2022). Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: a review. Food Chemistry, 135186. https://doi.org/10.1016/j.foodchem.2021.135186
Firozi, M., Amiri, M., & Kahneh, E. (2021). Effect of tea seed oil on post-harvest quality of Moro blood orange. Journal of Horticulture and Postharvest Research, 4(1), 115–126. https://doi.org/10.22077/jhpr.2020.3355.1143
García-Betanzos, C. I., Hernández-Sánchez, H., Bernal-Couoh, T. F., Quintanar-Guerrero, D., & Zambrano-Zaragoza, M. de la L. (2017). Physicochemical, total phenols and pectin methylesterase changes on quality maintenance on guava fruit (Psidium guajava L.) coated with candeuba wax solid lipid nanoparticles-xanthan gum. Food Research International, 101, 218–227. https://doi.org/10.1016/j.foodres.2017.08.065
Gupta, A. K., Pathak, U., Tongbram, T., Medhi, M., Terdwongworakul, A., Magwaza, L. S., … Mishra, P. (2022). Emerging approaches to determine maturity of citrus fruit. Critical Reviews in Food Science and Nutrition, 62(19), 5245–5266. https://doi.org/10.1080/10408398.2021.1883547
Hadiyanto, H., Christwardana, M., Suzery, M., Sutanto, H., Nilamsari, A. M., & Yunanda, A. (2019). Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from spirulina sp., 15(5–6). https://doi.org/10.1515/ijfe-2018-0290
Handojo, L. A., Shofinita, D., Evelina, G., & Nasution, A. N. (2022). Edible coating development to extend shelf life of mangoes (Mangivera indica L.). In IOP Conference Series: Earth and Environmental Science (Vol. 980, p. 12046). IOP Publishing. https://doi.org/10.1088/1755-1315/980/1/012046
Howard, L. R., Clark, J. R., & Brownmiller, C. (2003). Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. Journal of the Science of Food and Agriculture, 83(12), 1238–1247. https://doi.org/10.1002/jsfa.1532
Iftikhar, A., Rehman, A., Usman, M., Ali, A., Ahmad, M. M., Shehzad, Q., Shabbir, M. A. (2022). Influence of guar gum and chitosan enriched with lemon peel essential oil coatings on the quality of pears. Food Science & Nutrition, 10(7), 2443–2454. https://doi.org/10.1002/fsn3.2880
Keawmanee, N., Ma, G., Zhang, L., Yahata, M., Murakami, K., Yamamoto, M., Kato, M. (2022). Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges. Plant Physiology and Biochemistry, 173, 14–24. https://doi.org/10.1016/j.plaphy.2022.04.016
Kerch, G. (2015). Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends in Food Science & Technology, 46(2), 159–166.  https://doi.org/10.1016/j.tifs.2015.08.003
Khan, M. M., Al-Yahyai, R., & Al-Said, F. (2017). The lime: botany, production and uses. CABI. https://doi.org/10.1079/9781780647846.0000
Kore, V. T., Tawade, S. S., & Kabir, J. (2017). Application of edible coatings on fruits and vegetables. Imperial Journal of Interdisciplinary Research, 3(1), 591–603.
Kou, X., Wang, S., Zhang, Y., Guo, R., Wu, M., Chen, Q., & Xue, Z. (2014). Effects of chitosan and calcium chloride treatments on malic acid-metabolizing enzymes and the related gene expression in post-harvest pear cv. ‘Huang guan’. Scientia Horticulturae, 165, 252–259. https://doi.org/10.1016/j.scienta.2013.11.008
Krishna, K. R., & Rao, D. V. S. (2014). Effect of chitosan coating on the physiochemical characteristics of guava (Psidium guajava L.) fruits during storage at room temperature. Indian Journal of Science and Technology, 7(5), 554. https://doi.org/10.17485/ijst/2014/v7i5.20
Kritzinger, I. (2019). Postharvest moisture loss in Japanese plums. Doctoral dissertation. Stellenbosch: Stellenbosch University.
Kubheka, S. F., Tesfay, S. Z., Mditshwa, A., & Magwaza, L. S. (2020). Evaluating the efficacy of edible coatings incorporated with moringa leaf extract on postharvest of ‘Maluma’ avocado fruit quality and its biofungicidal effect. HortScience, 55(4), 410–415. https://doi.org/10.21273/HORTSCI14721-19
Mahmoudi, R., Razavi, F., Rabiei, V., Palou, L., & Gohari, G. (2022). Postharvest chitosan-arginine nanoparticles application ameliorates chilling injury in plum fruit during cold storage by enhancing ROS scavenging system activity. BMC Plant Biology, 22(1), 555. https://doi.org/10.1186/s12870-022-03939-4
Maringgal, B., Hashim, N., Mohamed Amin Tawakkal, I. S., & Muda Mohamed, M. T. (2020). Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science and Technology, 96, 253–267. https://doi.org/10.1016/j.tifs.2019.12.024
McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
Meitha, K., Pramesti, Y., & Suhandono, S. (2020). Reactive oxygen species and antioxidants in postharvest vegetables and fruits. International Journal of Food Science, 2020(1), 8817778. https://doi.org/10.1155/2020/8817778
Mohammadi, M., Rastegar, S., & Rohani, A. (2023). Enhancing shelf-life and quality of Mexican lime (Citrus aurantifolia cv.) fruit: utilizing edible coating from wild sage seeds enriched with pomegranate seed oils. Journal of Food Measurement and Characterization, 18(1), 331-344. https://doi.org/10.1007/s11694-023-02176-0
Nakamoto, M. M., Assis, M., de Oliveira Filho, J. G., & Braga, A. R. C. (2023). Spirulina application in food packaging: gaps of knowledge and future trends. Trends in Food Science & Technology, 133, 138–147. https://doi.org/10.1016/j.tifs.2023.02.001
Olawuyi, I. F., Park, J. J., Lee, J. J., & Lee, W. Y. (2019). Combined effect of chitosan coating and modified atmosphere packaging on fresh‐cut cucumber. Food Science & Nutrition, 7(3), 1043–1052. https://doi.org/10.1002/fsn3.930
Ordonez, A. A. L., Gomez, J. D., & Vattuone, M. A. (2006). Antioxidant activities of sechium edule (Jacq.) Swartz extracts. Food Chemistry, 97(3), 452–458.    https://doi.org/10.1016/j.foodchem.2005.05.024
Parvin, N., Rahman, A., Roy, J., Rashid, M. H., Paul, N. C., Mahamud, M. A., … Molla, M. E. (2023). Chitosan coating improves postharvest shelf-life of mango (Mangifera indica L.). Horticulturae, 9(1), 64. https://doi.org/10.3390/horticulturae9010064
Quintana, S. E., Llalla, O., García-Risco, M. R., & Fornari, T. (2021). Comparison between essential oils and supercritical extracts into chitosan-based edible coatings on strawberry quality during cold storage. The Journal of Supercritical Fluids, 171, 105198. https://doi.org/10.1016/j.supflu.2021.105198
Raddatz-Mota, D., Franco-Mora, O., Mendoza-Espinoza, J. A., Rodríguez-Verástegui, L. L., de León-Sánchez, F. D., & Rivera-Cabrera, F. (2019). Effect of different rootstocks on Persian lime (Citrus latifolia T.) postharvest quality. Scientia Horticulturae, 257, 108716. https://doi.org/10.1016/j.scienta.2019.108716
Ramji, V., & Vishnuvarthanan, M. (2022). Chitosan ternary bio nanocomposite films incorporated with MMT K10 nanoclay and Spirulina. Silicon, 14(3), 1209–1220. https://doi.org/10.1007/s12633-021-01045-z.
Rastegar, S., & Atrash, S. (2021). Effect of alginate coating incorporated with Spirulina, Aloe vera and guar gum on physicochemical, respiration rate and color changes of mango fruits during cold storage. Journal of Food Measurement and Characterization, 15(1), 265–275. https://doi.org/10.1007/s11694-020-00636-4
Rastgoo, N., Rastegar, S., & Rohani, A. (2024). Maintaining quality of Lisbon lemon (Citrus limon) in cold storage using natural elicitors. Journal of Horticulture and Postharvest Research, 7(2), 99–114. https://doi.org/10.22077/jhpr.2024.7125.1352
R Core Team. (2022). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org
Ruzaina, I., Zhong, F., Abd. Rashid, N., Jia, W., Li, Y., Zahrah Mohamed Som, H., … Zahid Abidin, M. (2017). Effect of different degree of deacetylation, molecular weight of chitosan and palm stearin and palm kernel olein concentration on chitosan as edible packaging for cherry tomato. Journal of Food Processing and Preservation, 41(4), e13090. https://doi.org/10.1111/jfpp.13090
Saucedo-Pompa, J. Torres-Castillo, C. Castro-López, R. Rojas, E. Sánchez-Alejo, M. Ngangyo-Heya, & G. Martínez-Ávila. (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111, 438–450. https://doi.org/10.1016/j.foodres.2018.05.061
Santos, L. C. dos, Silva, I. J. da, Santos, A. V. D. dos, Sousa, E. P. da R., Oliveira, A. M. F. de, Sousa, V. F. de O., Araújo, R. H. C. R. (2023). Edible coating with microalgae and modified atmosphere packaging for post-harvest conservation of tomatoes. Horticultura Brasileira, 41, e2503. https://doi.org/10.1590/s0102-053620230101
Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5), 152. https://doi.org/10.3390/coatings8050152
Sarengaowa, Wang, L., Liu, Y., Yang, C., Feng, K., & Hu, W. (2022). Screening of essential oils and effect of a chitosan-based edible coating containing cinnamon oil on the quality and microbial safety of fresh-cut potatoes. Coatings, 12(10), 1492. https://doi.org/10.3390/coatings12101492
Saxena, A., Sharma, L., & Maity, T. (2020). Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. In Biopolymer-based formulations. Elsevier, 859–880. https://doi.org/10.1016/B978-0-12-816897-4.00028-1
Serradell, M. de los A., Rozenfeld, P. A., Martínez, G. A., Civello, P. M., Chaves, A. R., & Añón, M. C. (2000). Polyphenoloxidase activity from strawberry fruit (Fragaria ananassa, Duch., cv Selva): Characterisation and partial purification. Journal of the Science of Food and Agriculture, 80(9), 1421–1427. https://doi.org/10.1002/1097-0010(200007)80:9<1421::AID-JSFA649>3.0.CO;2-K
Shiekh, R. A., Malik, M. A., Al-Thabaiti, S. A., & Shiekh, M. A. (2013). Chitosan as a novel edible coating for fresh fruits. Food Science and Technology Research, 19(2), 139–155. https://doi.org/10.3136/fstr.19.139
Singh, K. K., & Reddy, B. S. (2006). Post-harvest physico-mechanical properties of orange peel and fruit. Journal of Food Engineering, 73(2), 112–120.    https://doi.org/10.1016/j.jfoodeng.2005.01.010
Sun, Y., Singh, Z., Tokala, V. Y., & Heather, B. (2019). Harvest maturity stage and cold storage period influence lemon fruit quality. Scientia Horticulturae, 249, 322–328. https://doi.org/10.1016/j.scienta.2019.01.056
Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40–48. https://doi.org/10.1016/j.fpsl.2016.12.001
Thakur, R., Pristijono, P., Bowyer, M., Singh, S. P., Scarlett, C. J., Stathopoulos, C. E., & Vuong, Q. V. (2019). A starch edible surface coating delays banana fruit ripening. LWT, 100, 341–347. https://doi.org/10.1016/j.lwt.2018.10.070
Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38(5), 487–494. https://doi.org/10.1016/j.foodres.2004.10.016
Wang, H., Iqbal, A., Murtaza, A., Xu, X., Pan, S., & Hu, W. (2022). A review of discoloration in fruits and vegetables: formation mechanisms and inhibition. Food Reviews International, 1–22.
Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT - Food Science and Technology, 52(2), 71–79. https://doi.org/10.1016/j.lwt.2012.05.003
Wijewardane, R. M. N. A. (2022). Evaluation of the effect of fruit coating on shelf life extension of lime (Citrus aurantifolia) under different storage condition. Journal of Horticulture and Postharvest Research, 5(4), 337–348. https://doi.org/10.22077/jhpr.2022.4949.1261
Zeb, S., Sajid, M., Shah, S. T., Ali, M., Ali, S., Nawaz, Z., … Shah, S. A. A. (2020). 34. Influence of post-harvest application of chitosan on physico-chemical changes of apple fruit during storage. Pure and Applied Biology, 9(4), 2554–2562. https://doi.org/10.19045/bspab.2020.90272
Zhang, P., & Zhou, Z. (2019). Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’lemon (Citrus limon (L.) Burm. f.). Scientia Horticulturae, 248, 70–80. https://doi.org/10.1016/j.scienta.2019.01.056