AOAC. (2020). Official methods of analysis of the Association of Official Analytical Chemistry. 20. ed. Washington D.C: Ed. George, W., Latimer, J.R., p. 3172.
Arabia, A., Munné-Bosch, S., & Muñoz, P. (2024). Ascorbic acid as a master redox regulator of fruit ripening. Postharvest Biology and Technology, 207, 112614. https://doi.org/10.1016/j.postharvbio.2023.112614
Corpas, F.J., Freschi, L., & Palma, J.M. (2023). ROS metabolism and ripening of fleshy fruits. In Advances in Botanical Research (Vol. 105, pp. 205-238). Academic Press. https://doi.org/10.1016/bs.abr.2022.08.024
Costa, F.B., Menezes, J.B., Alves, R.E., Sousa Nunes, G.H., & Maracajá, P.B. (2010). Armazenamento refrigerado do mamão havaí ‘Golden’produzido na Chapada do Apodi, RN, Brasil. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 5(4), 9.
Gao, H.J., Yang, H.Q., & Wang, J.X. (2009). Arginine metabolism in roots and leaves of apple (
Malus domestica Borkh.): the tissue-specific formation of both nitric oxide and polyamines.
Scientia Horticulturae,
119 (2), 147-152.
https://doi.org/10.1016/j.scienta.2008.07.034
Kahawattage, A., Hansini, N., Daranagama, D., & Ranasinghe, C. (2023). Effect of pre-treatments with natural compounds for controlling anthracnose in papaya variety Red Lady.
Journal of Horticulture and Postharvest Research,
6(2), 169-180.
https://doi.org/10.22077/jhpr.2023.5762.1292
Laurora, A., Bingham, J.P., Poojary, M.M., Wall, M.M. & Ho, K.K. (2021). Carotenoid composition and bioaccessibility of papaya cultivars from Hawaii.
Journal of Food Composition and Analysis,
101, 103984.
https://doi.org/10.1016/j.jfca.2021.103984
Mabunda, E., Mafeo, T., Mathaba, N., Buthelezi, D., & Satekge, T. (2023). Effects of putrescine postharvest dips and refrigerated storage temperature on quality attributes and shelf-life of ‘Solo’ papaya fruit.
Journal of Horticulture and Postharvest Research,
6(2), 193-206.
https://doi.org/10.22077/jhpr.2023.5793.1295
Macedo, J.J, Sanches, A.G., Rabelo, M.C., Lopes, M.M., Freitas, V.S., Silveira, A.G., & Miranda, M.R.A. (2023). Pulsed light influences several metabolic routes, delaying ripening and improving the postharvest quality of acerola.
Scientia Horticulturae,
307, 111505.
https://doi.org/10.1016/j.scienta.2022.111505
Mahmoudi, R., Razavi, F., Rabiei, V., Palou, L., & Gohari, G. (2022). Postharvest chitosan-arginine nanoparticles application ameliorates chilling injury in plum fruit during cold storage by enhancing ROS scavenging system activity.
BMC Plant Biology,
22(1), 555.
https://doi.org/10.1186/s12870-022-03952-8
Mendy, T.K., Misran, A., Mahmud, T.M.M., & Ismail, S.I. (2019). Application of Aloe vera coating delays ripening and extend the shelf life of papaya fruit.
Scientia Horticulturae,
246, 769-776.
https://doi.org/10.1016/j.scienta.2018.11.054
Nasir, U., Ismail, A., Riaz, M., Razzaq, K., Ali, S., Hussain, A., & Oliveira, C.A.F. (2024). Exploring fruit ripening methods: conventional, artificial, and novel approaches for quality and health.
Food Control, 110626.
https://doi.org/10.1016/j.foodcont.2024.110626
Pott, D.M., Vallarino, J.G., & Osorio, S. (2020). Metabolite changes during postharvest storage: Effects on fruit quality traits.
Metabolites,
10(5), 187.
https://doi.org/10.3390/metabo10050187
Sanches, A.G., Repolho, R.P.J., Santos, E.X.D, Lima, K.S., & Cordeiro, CAM. (2021). Combination effect of citric acid and hot water treatment on the quality of pulp and pericarp of rambutan fruit.
Journal of Horticulture and Postharvest Research,
4(2), 151-162.
https://doi.org/10.22077/jhpr.2020.3522.1153
Selvaraj, Y., Pal, D.K., Subramanyam, M.D., & Iyer, C.P.A. (1982). Changes in the chemical composition of four cultivars of papaya (
Carica papaya L.) during growth and development.
Journal of Horticultural Science, 57(1), 135-143.
https://doi.org/10.1080/00221589.1982.11515033
Shu, P., Min, D., Ai, W., Li, J., Zhou, J., Li, Z., & Guo, Y. (2020). L-Arginine treatment attenuates postharvest decay and maintains quality of strawberry fruit by promoting nitric oxide synthase pathway.
Postharvest Biology and Technology,
168, 111253.
https://doi.org/10.1016/j.postharvbio.2020.111253
Sun, Y., Chen, Y., Guo, Y., Zhang, Y., & Li, Y. (2024). Pre and postharvest spraying of arginine enhanced the stress resistance and promoted wound healing in broccoli during storage.
Postharvest Biology and Technology,
208, 112669.
https://doi.org/10.1016/j.postharvbio.2023.112669
Tang, H., Zhang, X., Gong, B., Yan, Y. & Shi, Q. (2020). Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment.
Food Chemistry,
311, 126009.
https://doi.org/10.1016/j.foodchem.2019.126009
Wei, H., Seidi, F., Zhang, T., Jin, Y., & Xiao, H. (2021). Ethylene scavengers for the preservation of fruits and vegetables: A review.
Food Chemistry,
337, 127750.
https://doi.org/10.1016/j.foodchem.2020.127750
Yuan, Y., Zhao, Y., Yang, J., Jiang, Y., Lu, F., Jia, Y., & Yang, B. (2017). Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR.
Food Chemistry,
218, 406-412.
https://doi.org/10.1016/j.foodchem.2016.09.080
Zhang, X., Ji, N., Zhen, F., Ren, P., & Li, F. (2014). Metabolism of endogenous arginine in tomato fruit harvested at different ripening stages.
Scientia Horticulturae,
179, 349-355.
https://doi.org/10.1016/j.scienta.2014.09.045
Zheng, S., Hao, Y., Fan, S., Cai, J., Chen, W., Li, X., & Zhu, X. (2021). Metabolomic and transcriptomic profiling provide novel insights into fruit ripening and ripening disorder caused by 1-MCP treatments in papaya.
International Journal of Molecular Sciences,
22(2), 916.
https://doi.org/10.3390/ijms22020916
Zhou, Y., Liu, X., Liang, X., Li, H., Lai, J., Liao, Y., & Liu, K. (2024). Biochemical and metabolomics analyses reveal the mechanisms underlying ascorbic acid and chitosan coating mediated energy homeostasis in postharvest papaya fruit. Food Chemistry, 439, 138168. https://doi.org/10.1016/j.foodchem.2023.138168