Aktsoglou, D. C., Kasampalis, D. S., Sarrou, E., Tsouvaltzis, P., Chatzopoulou, P., Martens, S., & Siomos, A. S. (2021). Protein hydrolysates supplement in the nutrient solution of soilless grown fresh peppermint and spearmint as a tool for improving product quality. Agronomy, 11, 317. https://doi.org/10.3390/agronomy11020317.
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 25, 9(3), 42. https://doi.org/10.3390/toxics9030042.
Artmann, M., & Sartison, K. (2018). The role of urban agriculture as a nature-based solution: a review for developing a systemic assessment framework. Sustainability, 10, 1937. https://doi.org/10.3390/su10061937.
Asadi, M., Rasouli, F., Amini, T., Hassanpouraghdam, M. B., Souri, S., Skrovankova, S., Mlcek, J., & Ercisli, S. (2022). Improvement of photosynthetic pigment characteristics, mineral content, and antioxidant activity of lettuce (Lactuca sativa L.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy, 12(8), 1943.
Badmus, U. O., Crestani, G., Cunningham, N., Havaux, M., Urban, O., & Jansen, M. A. K. (2022). UV radiation induces specific changes in the carotenoid profile of arabidopsis thaliana. Biomolecules, 12, 1879. https://doi.org/10.3390/ biom12121879.
Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules, 11, 1096. https://doi.org/10.3390/biom11081096.
Carillo, P., Colla, G., Fusco, G. M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H., & Kyriacou, M. C. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9(8), 450. https://doi.org/10.3390/agronomy9080450
Caruso, G., Formisano, L., Cozzolino, E., Pannico, A., El-Nakhel, C., Rouphael, Y., Tallarita, A., Cenvinzo, V., & De Pascale, S. (2020). Shading affects yield, elemental composition and antioxidants of perennial wall rocket crops grown from spring to summer in southern Italy. Plants, 9, 933. https://doi.org/10.3390/plants9080933.
Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38. https://doi.org/10.1016/j.scienta.2015.08.037
Cristiano, G., Pallozzi, E., Conversa, G., Tufarelli, V., & De Lucia, B. (2018). Effects of an animal-derived biostimulant on the growth and physiological parameters of potted snapdragon (Antirrhinum majus L.). Frontiers in Plant Science, 9, 861. https://doi.org/10.3389/fpls.2018.00861.
Di Mola, I., Conti, S., Cozzolino, E., Melchionna, G., Ottaiano, L., Testa, A., Sabatino, L., Rouphael, Y., & Mori, M. (2021). Plant-based protein hydrolysate improves salinity tolerance in Hemp: agronomical and physiological aspects. Agronomy, 11(2), 342.
Du Jardin, P. (2015). Plants biostimulants: definition, concept, main categories and regulations. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
Duan, R., Ma, Y., & Yang, L. (2018). Effects of shading on photosynthetic pigments and photosynthetic parameters of
Lespedeza buergeri seedlings.
Materials Science and Engineering 452, 022158. https://doi.org/10.1088/1757-899X/452/2/022158.
Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D., & Nardi, S. (2018). Evaluation of seaweed extracts from laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science, 9, 428. https://doi.org/10. 3389/fpls.2018.00428.
Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Bba-Gen Subjects 990, 87–92.
Guo, H. X., Liu, W. Q., & Shi, Y. C. (2006). Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica, 44(1), 140-142.
Hamidah, S., Firmanul Arifin, Y., & Fitriani, A. (2018). Micro climate assessment of medicinal plant habitat for the first step of domestication. AR International, 9(3), 145-150.
He, Z.S., Tang, R., Li, M. J., Jin, M. R, Xin, C., Liu, J. F., & Hong, W. (2019). Response of photosynthesis and chlorophyll fluorescence parameters of Castanopsis kawakamii seedlings to forest gaps. Forests, 11(1), 21.
Hirano, I., Iida, H., Ito, Y., Park, H. D., & Takahashi, K. (2019). Effects of light conditions on growth and defense compound contents of Datura inoxia and D. stramonium. Journal of Plant Research, 132(4), 473-480. https://doi.org/10.1007/s10265-019-01111-z.
Idris, A., Linatoc, A. C., & Bin AbuBakar, M. F. (2019). Effect of light intensity on the photosynthesis and stomatal density of selected plant species of gunung ledang, johor. Malaysian Applied Biology, 48(3), 133–140.
Jolayemi, O. L., Malik, A. H., Vetukuri, R. R., Saripella, G. V., Kalyandurg, P. B., Ekblad, T., Yong, J. W. H., Olsson, M. E., & Johansson, E. (2023). Metabolic processes and biological macromolecules defined the positive effects of protein-rich biostimulants on sugar beet plant development. International Journal of Molecular Sciences, 24, 9720.
Khoshbakht, D., Asghari, M. R., & Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56, 1313–1325.
Kim, H. J., Ku, K. M., Choi, S., & Cardarelli, M. (2019). Vegetal-derived biostimulant enhances adventitious rooting in cuttings of basil, tomato, and chrysanthemum via brassinosteroid-mediated processes.
Agronomy, 9(2), 74.
https://doi.org/10.3390/agronomy9020074
Liu, Y. Q., Sun, X. Y., Wang, Y., & Liu, Y. (2007). Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecology Sin, 27, 3457–3464.
Marcussen, T., Ballard, H. E., Danihelka, J., Flores, A. R., Nicola, M.V., & Watson, J. M. (2022). A revised phylogenetic classification for
Viola (Violaceae).
Plants, 11(17
), 2224.
https://doi.org/10.3390/plants11172224
Munaro, D., Mazo, C. H., Bauer, C. M., Gomes, L. D. S., Teodoro, E. B., Mazzarino, L., Veleirinho, M. B. D. R., Silva, S. M., & Maraschin, M. A. (2024). Novel biostimulant from chitosan nanoparticles and microalgae-based protein hydrolysate: Improving crop performance in tomato. Scientia Horticulturae, 323, 112491.
Niari Khamssi, N., & Najaphy, A. (2012). Comparison of photosynthetic components of wheat genotypes under rain-fed and irrigated conditions. Photochemistry and Photobiology, 8, 76–80.
Polo, J., & Mata, P. (2018). Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, flowering, and yield of gold cherry tomatoes grown under low stress ambient field conditions. Frontiers in Plant Science, 8, 2261. https://doi.org/10.3389/fpls.2017.02261.
Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1), 149-156.
Proietti, S., Paradiso, R., Moscatello, S., Saccardo, F., & Battistelli, A. (2023). Light intensity affects the assimilation rate and carbohydrates partitioning in spinach grown in a controlled environment. Plants, 12, 804. https://doi.org/10.3390/plants12040804.
Rachidi, F., Benhimaa, R., Sbaboub, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution.
Biotechnology Reports, 25 e00426.
https://doi.org/10.1016/j.btre.2020.e00426
Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontier in Plant Science, 11, 40.
Schiavon, M., Ertani, A., & Nardi, S. (2008). Effects of an alfaalfa protein hydrolysate on the gene expression and activity of enzymes of TCA cycle and N metabolism in Zea mays L. Journal of Agriculture and Food Chemistry, 56, 11800–11808. https://doi.org/10.1021/jf802362g.
Shin, Y. K., Bhandari, S. R., Jo, J. S, Song, J. W., & Lee, J. G. (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae, 7, 238. https://doi.org/10.3390/ horticulturae70802.
Sun, W., Shahrajabian, M. H., Kuang, Y., & Wang, N. (2024). Biostimulants and protein hydrolysates in agricultural sciences. Plants, 13, 210. https://doi.org/ 10.3390/plants13020210.
Szymborska-Sandhu, I., Przybył, J. L., Pioro-Jabrucka, E., Jedrzejuk, A., Weglarz, Z., & Baczek, K. (2020). Effect of shading on development, yield and quality of bastard balm herb (
Melittis melissophyllum L.).
Molecules, 25(9), 2142.
https://doi.org/10.3390/molecules2509214.
Tang. W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., & Sun, J. (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (
Medicago sativa) seedlings.
Plants, 11(13), 1688. P18.
https://doi.org/10.3390/plants11131688
Vitale, E., Velikova, V., Tsonev, T., Ferrandino, I., Capriello, T., & Arena, C. (2021). The interplay between light quality and biostimulant application affects the antioxidant capacity and photosynthetic traits of soybean (Glycine max L. Merrill). Plants, 10, 861. https://doi.org/10.3390/plants10050861.
Warren, C. R., Low, M., Matyssek, R., & Tausz, M. (2007). Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environmental and Experimental Botany, 59(2), 130-138. https://doi.org/10.1016/j.envexpbot.2005.11.004
Xu, M.Y., Wu, K., Liu, Y., Liu, J., & Tang, Z. (2020). Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. Photosynthetica, 58(3), 881-889. https://doi.org/10.32615/ps.2020.045.