Document Type : Original Article

Authors

Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering and Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

Abstract

Purpose: The current study examined the impacts of postharvest treatments with different coating solutions to enhance the shelf life of papaya at the least nutrient loss. Research method: The study was carried out with mature and fresh shahi papayas (BARI Papaya-1) using Complete Randomized Design. The experiment comprised four treatments namely control (T1), coating with 2% pectin solution (T2), 2% cellulose acetate solution (T3), and 2% sodium alginate solution (T4). Findings: Significant variations among the treatments regarding physicochemical characteristics like color, weight loss (%), moisture content (%), pH, titratable acidity, total soluble solids (°Brix), vitamin C content, and biological parameters like total viable count (TVC), and shelf life were observed for the 12 day storage periods. It was observed that vitamin C content, moisture content, and titratable acidity gave higher values in the treated samples (T2, T3, T4) with the lowest color score, weight loss, total soluble solids, and pH. Among the samples, the papaya treated with 2% sodium alginate solution obtained the longest shelf life with the lowest TVC value. Conversely, the control papaya had the highest microbial load with the shortest shelf life. Research limitations: There was no limitation. Originality/Value: Among the treatments, 2% sodium alginate solution increased the shelf life of papaya by 16% and decreased post-harvest loss. Therefore, 2% sodium alginate solution treatment seems to be a good substitute for preservation and an effective way to retain the quality of papaya.

Keywords

Main Subjects

Acevedo C.A., Lopez D.A., Tapia M.J., Enrione J., Skurtys O., Pedreschi F., Brown D.I., Creixell W., & Osorio F. (2012). Using RGB image processing for designating an alginate edible film. Food Bioprocess Technology, 5, 1511–1520. https://doi.org/10.1007/s11947-010-0453-y
Ahmed, W., Butt, M.S., Sharif, M. K. & Shahid, M. (2013). Comparative estimation of alginate and soy-based coatings on pH and vitamin C contents of strawberry (Fragaria ananassa) at controlled climate chamber. Journal of Food Process and Technology, 4(11), 280. https://doi.org/10.4172/2157-7110.1000280.
Albertini, S., Reyes, A.E.L., Trigo, J.M., Sarriés, G.A., & Spoto, M.H.F. (2016). Effects of chemical treatments on fresh-cut papaya. Food Chemistry, 190, 1182–1189. https://doi.org/10.1016/j.foodchem.2015.06.038
Alharaty, G., & Ramaswamy, H. S. (2020). The Effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. Journal of Composites Science, 4(3), 123. https://doi.org/10.3390/jcs4030123
AOAC. (2009). Official methods of analysis of the association of official analytical chemists. Washington, DC (17th ed.).
Bhuyan, M. S., & Raju, V. (2018). Post-Harvest losses and marketing technologies of agricultural products in Bangladesh. International Journal of Marketing & Human Resource Management, 9(1), 18-30. https://doi.org/10.34218/IJMHRM.9.1.2018.002.
Brishti, F. H., Misir, J., & Sarker, A. (2013). Effect of bio preservatives on storage life of papaya (Carica papaya L.). International Journal of Food Studies2(1), 126-136. https://doi.org/10.7455/ijfs/2.1.2013.a10
Chiabrando, V., & Giacalone, G. (2016). Effect of chitosan and sodium alginate edible coatings on the postharvest quality of fresh-cut nectarines during storage. Fruits71(2), 79-85. https://doi.org/10.1051/fruits/2015049.
Chien, P.J., Sheu, F., & Yang, F.H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit, Journal of Food Engineering, 78, 225–229. https://doi.org/ 10.1016/j.jfoodeng.2005.09.022.
Chukwuka, K. S., Iwuagwu, M., & Uka, U. N. (2013). Evaluation of nutritional components of Carica papaya L. at different stages of ripening. IOSR Journal of Pharmacy and Biological Sciences6(4), 13-16. https://doi.org/10.9790/3008-0641316.
Correa-Betanzo, J., Jacob, J.K., Perez-Perez, C., & Paliyath, G. (2011). Effect of a sodium caseinate edible coating on berry cactus fruit (Myrtillocactus geometrizans) phytochemicals. Food Research International, 44, 1897–1904. https://doi.org/10.1016/j.foodres.2010.10.053.
Dev, N., Hossain, M. S., & Iqbal, A. (2019). Preparation and sensory evaluation of functional drink based on papaya (Carica papaya L.) pulp. Journal of the Bangladesh Agricultural University, 17(3), 388–395. https://doi.org/10.3329/jbau.v17i3.43221.
Ferrari C.C., Sarantoulos C.I.G.L. (2013). Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh cut melon, Food Bioprocess Technology, 6, 80-91. https://doi.org/10.1007/s11947-011-0704-6
Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valero, D., Serrano, M., Castillo, S., & Martínez-Romero, D. (2013). Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology83, 54-57. https://doi.org/10.1016/j.postharvbio.2013.03.011
Hamzah, H.M., Osman, A., Tan, C.P., & Ghazali, F.M. (2013). Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology & Technology, 75, 142–146. https://doi.org/10.1016/j.postharvbio.2012.08.012.
Hassan, M.H., & Gilani, S.A.M. (2006). A semi-fragile watermarking scheme for color image authentication. World Academy of Science, Engineering, and Technology19, 34-38.
Jiang, T. (2013). Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biology & Technology, 76, 91–97. https://doi.org/10.1016/j.postharvbio.2012.09.005.
Josalia, R., Francisca, L.C.M., Marcos, R.A.A., & Jose, C.C. (2013). Post-Harvest conservation of papaya 'Formosa Tainung 01' conditioned under different packaging systems. Social Science Research Network.
Kahawattage, A., Hansini, N., Daranagama, D. Anupama & Ranasinghe, C. (2023). Effect of pre-treatments with natural compounds for controlling anthracnose in papaya variety Red Lady. Journal of Horticulture and Postharvest Research, 6(2), 169-180. https://doi.org/10.22077/jhpr.2023.5762.1292
Kittur F.S., Saroja N., Haibibunnisa M.S., & Tharanathan R.N. (2001). Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango, European Food Research & Technology, 213, 306–311. https://doi.org/ 10.1007/s002170100363.
Liplap, P., Vigneault, C., Toivonen, P., Charles, M.T., & Vijaya Raghavan, G.S. (2013). Effect of hyperbaric pressure and temperature on tomato respiration rates and quality attributes. Postharvest Biology & Technology, 86, 240–248. https://doi.org/10.1016/j.postharvbio.2013.07.002.
Moradinezhad, F. & Firdous, N. (2025). Recent advances in application of edible coatings for temperate fresh/fresh-cut fruits: a review. Journal of Horticulture and Postharvest Research, 8(2), 151-176. https://doi.org/10.22077/jhpr.2024.8163.1425
Moreira, M.R., Roura, S.I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh-cut broccoli. LWT – Food Science & Technology, 44, 2335–2341. https://doi.org/10.1016/j.lwt.2011.04.009.
Narsaiah, K., Jha, S.N., Wilson, R.A., Mandge, H.M., Manikantan, M.R., Malik, R.K., & Vij, S.  (2013). Pediocin-loaded nanoliposomes and hybrid alginate-nanoliposome delivery systems for slow release of pediocin. Bionanoscience, 3, 37–42. https://doi.org/10.1007/s12668-012-0069-y
Narsaiah, K., Robin, A., Wilson, K., Gokul, H.M., Mandge, S.N., Jha, S. B., Rahul, K., Anurag, R.K., & Malik, S. V. (2014). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, 212-218. https://doi.org/10.1016/j.postharvbio.2014.10.003.
Narsaiah, K., Wilson, R.A., Gokul, K., Mandge, H.M., Jha, S.N., Bhadwal, S., Anurag, R.K., Malik, R.K., & Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology100, 212-218. https://doi.org/10.1016/j.postharvbio.2014.10.003.
Olivas, G.I., Mattinson, D.S., & Barbosa-Canovas, G.V. (2007). Alginate coatings for preservation of minimally processed ‘Gala’apples. Postharvest Biology and Technology45(1), 89-96. https://doi.org/10.1016/j.postharvbio.2006.11.018.
Owusu-Yaw, J., Marshall, M.R., Koburger, J.A., & Wei, C.I. (1988). Low pH inactivation of pectin-esterase in single-strength orange juice. Journal of Food Science, 53, 504-507. https://doi.org/10.1111/j.1365-2621.1988.tb07742.x.
Parven, A., Sarker, M. R., Megharaj, M., & Md. M. I. (2020). Prolonging the shelf life of Papaya (Carica papaya L.) using Aloe vera gel at ambient temperature. Scientia Horticulturae, 265, 109228. https://doi.org/10.1016/j.scienta.2020.109228.
Pathmanaban, G., Nagarajan, M., Manian, K., & Annamalainathan, K. (1995). Effect of using calcium salts on post-harvest preservation in fruits. Mar Agricultural Journal, 82, 47-50. https://doi.org/10.29321/MAJ.10.A01123.
Poverenov, E., Danino S., Horev B., Granit R., Vinokur Y., & Rodov V. (2014). Layer-by-layer electrostatic deposition of the edible coating on fresh-cut melon model: anticipated and unexpected effect of the alginate-chitosan combination. Food Bioprocess Technology 7, 1424–1432. https://doi.org/10.1007/s11947-013-1134-4.
Qamar, J., Ejaz, S., Anjum, M. A., Nawaz, A., Hussain, S., Ali, S., & Saleem, S. (2018). Effect of Aloe vera gel, chitosan and sodium alginate based edible coatings on postharvest quality of refrigerated strawberry fruits of cv. Chandler. Chandler. Journal of Horticultural Science & Technology, 1(8). https://doi.org/10.46653/jhst180101008
Ranganna, S. (2004). Handbook of Analysis of Quality Control for Fruit and Vegetable Products (2nd ed.). Tata Me Graw–Hill pub. Co. Ltd. New Delhi.
Raybaudi-Massilia, R.M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as a carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology121(3), 313-327. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010.
Rojas-Grau, M.A., Soliva-Fortuny, R., & Martın-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends in Food Science & Technology, 20, 438–447. https://doi.org/10.1016/j.tifs.2009.05.002.
Ron, B.H.W., & Simon, B.W. (1995). Changes in physiology, composition and sensory characteristics of Australian papaya during ripening. Australian Journal of Experimental Agriculture, 35(8), 1173 – 1176. https://doi.org/10.1071/EA9951173
Sharmin, M., Islam, M., &  Alim, M. (2016). Shelf-life enhancement of papaya with aloe vera gel coating at ambient temperature. Journal of the Bangladesh Agricultural University, 13(1), 131–136. http://dx.doi.org/10.22004/ag.econ.211230.
Senturk Parreidt, T., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods7(10), 170. https://doi.org/10.3390/foods7100170
Siriamornpun, S., & Kaewseejan, N. (2017). Quality, bioactive compounds, and antioxidant capacity of selected climacteric fruits with relation to their maturity. Scientia Horticulturae, 221, 33–42. https://doi.org/10.1016/j.scienta.2017.04.020.
Sultana, R., Nupur, A., Hossain, M., Aziz, M., & Uddin, M. (2020). Effect of potassium meta-bisulfite on quality and acceptability of formulated green mango pulp during freezing. Journal of Bangladesh Agricultural University, 18, 1. http://dx.doi.org/10.5455/JBAU.105300.
Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae, 259, 108853. https://doi.org/10.1016/j.scienta.2019.108853
Tamma, S., Mantur, S. G., Chandrashekar, S. C., Rangaswamy, K. T., & Patil, B. (2018). Status of Black Spot of Papaya (Asperisporium caricature): A New Emerging Disease. International Journal of Current Microbiology and Applied Sciences, 7(11), 309–314. https://doi.org/10.20546/ijcmas.2018.711.038.
Vieira, J.M., Flores-Lopez, M.L., de Rodríguez, D.J., Sousa, M.C., Vicente, A.A., & Martins, J.T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011.
Waghmare, R.B., & Annapure, U.S. (2013). The combined effect of chemical treatment and/ or modified atmosphere packaging (MAP) on the quality of fresh-cut papaya. Postharvest Biology & Technology, 85, 147–153. https://doi.org/10.1016/j.postharvbio.2013.05.010.
Yaman O., & Bayoindirli L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food science and Technology, 35(2), 146-150. https://doi.org/10.1006/fstl.2001.0827