Altaf, K., Younis, A., Ramzan, Y., & Ramzan, F. (2021). Effect of composition of agricultural wastes and biochar as a growing media on the growth of potted Stock (Matthiola incana) and Geranium (Pelargonium spp). Journal of Plant Nutrition, 44(7), 919-930. https://doi.org/10.1080/01904167.2020.1862205
Al-Wabel, M. I., Ahmad, M., Rafique, M. I., Akanji, M. A., Usman, A. R., & Al-Farraj, A. S. (2021). Sulfamethoxazole leaching from manure-amended sandy loam soil as affected by the application of jujube wood waste-derived biochar.
Molecules, 26(15), 4674. https://doi.org/
10.3390/molecules26154674.
Bhatia, S. K., Palai, A. K., Kumar, A., Bhatia, R. K., Patel, A. K., Thakur, V. K., & Yang, Y. H. (2021). Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340, 125644. https://doi.org/10.1016/j.biortech.2021.125644.
Chen, G., Liu, H., Wei, Q., Zhao, H., Liu, J., & Yu, Y. (2017). The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers.
Journal of Experimental Botany,
68(3), 457-467.
https://doi.org/10.1093/jxb/.erw426
Conversa, G., Bonasia, A., Lazzizera, C., & Elia, A. (2015). Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (
Pelargonium zonale L.) plants.
Frontiers in Plant Science,
6, 429.
https://doi.org/10.3389/fpls.2015.00429
Davoudi, M. & Bayat, H. (2024). Salinity tolerance of five ornamental species from the Asteraceae family in seed germination and early seedling growth stages. Journal of Horticulture and Postharvest Research, 7(1), 31-44. https://doi.org/10.22077/jhpr.2024.6778.1332
Du, Y. D., Zhang, X. Q., Shu, L., Feng, Y., Lv, C., Liu, H. Q., ... & Kong, Q. (2021). Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. Environmental Science and Pollution Research, 28, 40568-40586. https://doi.org/10.1007/s11356-020-09714-z
Ebrahimi, M., Pouyan, M., Ghous, K., Shahi, T., Hosseini, S., & Ragh Ara, H. (2022). Comparison of the efficiency of preferred grafting methods in jujube (Ziziphus jujuba Mill.) genotypes. In The First National Conference on Production and Postharvest Technology of Horticultural Plants (PPTHP 2022), May (pp. 25-26).
EL-Mogy, M. M., Adly, M. A., Shahein, M. M., Hassan, H. A., Mahmoud, S. O., & Abdeldaym, E. A. (2024). Integration of biochar with vermicompost and compost improves agro-physiological properties and nutritional quality of greenhouse sweet pepper. Agronomy, 14(11), 2603. https://doi.org/10.3390/agronomy14112603
Esfahani, R. N., Khaghani, S., Mortazaeinezhad, F., Azizi, A., & Gomarian, M. (2023). Evaluation of vermicompost application and stress of dehydration on mullein medicinal plants.
International Journal of Horticultural Science,
29, 69-77.
https://doi.org/10.31421/ijhs/29/2023/11424
Farhan, M., Sathish, M., Kiran, R., Mushtaq, A., Baazeem, A., Hasnain, A., ... & Moustafa, M. (2024). Plant nitrogen metabolism: Balancing resilience to nutritional stress and abiotic challenges. Phyton-International Journal of Experimental Botany, 93(3), 581-609.
Farjana, S., Islam, M. A., & Haque, T. (2019). Effects of organic and inorganic fertilizers, and mulching on growth and yield of cabbage (
Brassica oleracea var. capitata L.).
Journal of Horticulture and Postharvest Research,
2(2), 95-104.
https://doi.org/10.22077/jhpr.2019.2119.1042
Fedeli, R., Vannini, A., Djatouf, N., Celletti, S., & Loppi, S. (2024). Can lettuce plants grow in saline soils supplemented with biochar?.
Heliyon,
10(4).
https://doi.org/10.1016/j.heliyon.2024.e26526
Galmes, J., Flexas, J., Savé, R., & Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery.
Plant and Soil,
290, 139-155.
https://doi.org/10.1007/s11104-006-9148-6
Ginebra, M., Muñoz, C., Calvelo-Pereira, R., Doussoulin, M., & Zagal, E. (2022). Biochar impacts on soil chemical properties, greenhouse gas emissions and forage productivity: A field experiment.
Science of the Total Environment,
806, 150465.
https://doi.org/10.1016/j.scitotenv.2021.150465
Goswami L, Nath A, Sutradhar S, Bhattacharya SS, Kalamdhad A, Vellingiri K, Kim KH. 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, 200, 243-252. https://doi.org/10.1016/j.jenvman.2017.05.073.
Jabborova, D., Kadirova, D., Narimanov, A., & Wirth, S. (2021). Beneficial effect of biochar application on lettuce (
Latuca sativa L.) growth, root morphological traits and physiological properties.
Annals of Phytomedicine 10(2), 93-100.
https://dx.doi.org/10.21276/ap.2021.10.2.13
Jatuwong, K., Aiduang, W., Kiatsiriroat, T., Kamopas, W., & Lumyong, S. (2024). Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation. Microbiology Research, 15(1), 404-421. https://doi.org/10.3390/ microbiolres15010027
Jones, D. L., Shannon, D., Junvee-Fortune, T., & Farrar, J. F. (2005). Plant capture of free amino acids is maximized under high soil amino acid concentrations.
Soil Biology and Biochemistry,
37(1), 179-181.
https://doi.org/10.1016/j.soilbio.2004.07.021
Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., & Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (
Calendula officinalis L.).
Communications in Soil Science and Plant Analysis,
51(12), 1658-1669.
https://doi.org/10.1080/00103624.2020.1791157
Keykha, F., Bagheri, A. R., & Moshtaghi, N. (2016). Analysis of chalcone synthase and chalcone isomerase gene expression in pigment production pathway at different flower colors of
Petunia hybrida.
Journal of Cell and Molecular Research,
8(1), 8-14.
https://doi.org/10.22067/jcmr.v8i1.50406
Kulczycki, G., Magnucka, E. G., Oksińska, M. P., Kucińska, J., Kobyłecki, R., Pawęska, K., ... & Pietr, S. J. (2020). The effect of various types of biochar mixed with mineral fertilization on the development and ionome of winter wheat (
Triticum aestivum L.) seedlings and soil properties in a pot experiment.
Agronomy,
10(12), 1903.
https://doi.org/10.3390/agronomy10121903
Lachkar, A., Amari, K., & Ben Atia, I. (2021). Assessment of the organic fruit quality of local and introduced apricot cultivars grown in Tunisia: morphological and physico-chemical attributes.
Journal of Horticulture and Postharvest Research,
4(4), 399-412.
https://doi.org/10.22077/jhpr.2021.3998.1190
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review.
Soil Biology and Biochemistry,
43(9), 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In
Biochar for environmental management (pp. 1-13). Routledge.
https://doi.org/10.4324/9780203762264
Li, C., Ahmed, W., Li, D., Yu, L., Xu, L., Xu, T., & Zhao, Z. (2022). Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms. Applied Soil Ecology, 171, 104314.
Liang, J. F., Li, Q. W., Gao, J. Q., Feng, J. G., Zhang, X. Y., Wu, Y. Q., & Yu, F. H. (2021). Biochar rhizosphere addition promoted Phragmites australis growth and changed soil properties in the Yellow River Delta. Science of the Total Environment, 761, 143291. https://doi.org/10.1016/j.scitotenv.2020.143291
Lin, X. W., Xie, Z. B., Zheng, J. Y., Liu, Q., Bei, Q. C., & Zhu, J. G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil.
European Journal of Soil Science,
66(2), 329-338.
https://doi.org/10.1111/ejss.12225
Liu, X., Ma, Y., Manevski, K., Andersen, M. N., Li, Y., Wei, Z., & Liu, F. (2022). Biochar and alternate wetting-drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol. Science of the Total Environment, 806, 150513. https://doi.org/10.1016/j.scitotenv.2021.150513
Lu, H., Yan, M., Wong, M. H., Mo, W. Y., Wang, Y., Chen, X. W., & Wang, J. J. (2020). Effects of biochar on soil microbial community and functional genes of a landfill cover three years after ecological restoration.
Science of the Total Environment,
717, 137133.
https://doi.org/10.1016/j.scitotenv.2020.137133
Mak-Mensah, E., Sam, F. E., Kaito, I. O. I. S., Zhao, W., Zhang, D., Zhou, X., ... & Wang, Q. (2021). Influence of tied-ridge with biochar amendment on runoff, sediment losses, and alfalfa yield in northwestern China.
PeerJ,
9, e11889.
https://doi.org/10.7717/peerj.11889
Mamnabia, S., Nasrollahzadeh, S., Ghassemi-Golezani, G., & Raei, Y. (2020). Morpho-physiological traits, grain and oil yield of rapeseed (Brassica napus L.) affected by drought stress and chemical and bio-fertilizers. Journal of Agricultural Science and Sustainable Production, 30(3), 359-378.
Manzoor, A., Naveed, M. S., Ali, R. M. A., Naseer, M. A., Maqsood, U. H., Saqib, M., ... & Farooq, M. (2024). Vermicompost: A potential organic fertilizer for sustainable vegetable cultivation.
Scientia Horticulturae,
336, 113443.
https://doi.org/10.1016/j.scienta.2024.113443
Mohammadi Kabari, S. F., Asadi-Gharneh, H. A., Tavallali, V., & Rowshan, V. (2024). Differential response of biochar in mitigating salinity stress in periwinkle (
Catharanthus roseus L.) as an ornamental-medicinal plant species.
International Journal of Phytoremediation, 1-12.
https://doi.org/10.1080/15226514.2023.2300115
Piri, H., & Rashki, P. (2019). Effect of vermicompost and tea compost on cucumber greenhouse under water stress. Water and Irrigation Management, 9(1), 55-68.
Reddy, CS., Bhaskar, V.V., Naik, M.T., Madhuri, K.N., Subramanyam, K., & Fareeda, G. (2023). Effect of biochar, humic acid and microbial consortia on flowering parameters of African marigold (Tagetes erecta L.) cv. Bidhan-2. Pharma Innovation, 12(9), 978-984.
Roy, T. S., Imtiaz, N., Chakraborty, R., Kundu, B. C., & Chakraborty, E. (2022). Applying biochar and different form of nitrogen: be a good agricultural practice for better yield and processing quality of potato. Journal of Horticulture and Postharvest Research, 5(2), 187-196. https://doi.org/10.22077/jhpr.2022.4551.1232
Safari, S., Nazari, F., Vafaee, Y., & Teixeira da Silva, J. A. (2023). Impact of rice husk biochar on drought stress tolerance in perennial ryegrass (
Lolium perenne L.).
Journal of Plant Growth Regulation,
42(2), 810-826.
https://doi.org/10.1007/s00344-022-10588-3
Sahu, P., Kumar, A., Sahu, R. K., Nagendraprasad, H., Minj, S. K., & Painkra, D. S. (2023). Effect of different growing media on growth and flowering of petunia (
Petunia hybrida L.).
International Journal of Plant & Soil Science,
35(18), 1200-1206.
https://doi.org/10.9734/ijpss/2023/v35i183457
Suthar, S. (2010). Evidence of plant hormone like substances in vermiwash: An ecologically safe option of synthetic chemicals for sustainable farming.
Ecological Engineering,
36(8), 1089-1092.
https://doi.org/10.1016/j.ecoleng.2010.04.027
Theunissen, J., Ndakidemi, P. A., & Laubscher, C. P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences, 5(13), 1964-1973.
Vahidi, M. (2020). Land suitability evaluation for barberry and jujube using parametric method and analytical hierarchy process in Alghoorat region of Birjand. Iranian Journal of Soil and Water Research, 51(10), 2665-2680. https://doi.org/10.22059/IJSWR.2020.305789.668663
Vahidi, M. J., Sayyari Zahan, M. H., Bayat, H., & Parsa, Z. (2023). Short-term changes of soil physicochemical properties affected by organic modifier type and its application method. Archives of Agronomy and Soil Science, 69(14), 3015-3029. https://doi.org/10.1080/03650340.2023.2194639
Vahidi, M. J., Zahan, M. H. S., Atajan, F. A., & Parsa, Z. (2022). The effect of biochars produced from barberry and jujube on erosion, nutrient, and properties of soil in laboratory conditions.
Soil and Tillage Research,
219, 105345.
https://doi.org/10.1016/j.still.2022.105345
Wilke, B. M. (2005). Determination of chemical and physical soil properties. In: Monitoring and Assessing Soil Bioremediation. Soil Biology, Vol 5. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28904-6_2
Xi, J., Li, H., Xi, J., Tan, S., Zheng, J., & Tan, Z. (2020). Effect of returning biochar from different pyrolysis temperatures and atmospheres on the growth of leaf-used lettuce. Environmental Science and Pollution Research, 27, 35802-35813. https://doi.org/10.1007/s11356-020-09840-8
Yan, S., Zhang, S., Yan, P., & Aurangzeib, M. (2022). Effect of biochar application method and amount on the soil quality and maize yield in Mollisols of Northeast China.
Biochar,
4(1), 56.
https://doi.org/10.1007/s42773-022-00180-z.
Yoo, J. H., Luyima, D., Lee, J. H., Park, S. Y., Yang, J. W., An, J. Y., ... & Oh, T. K. (2021). Effects of brewer’s spent grain biochar on the growth and quality of leaf lettuce (
Lactuca sativa L. var. crispa.).
Applied Biological Chemistry,
64, 1-10.
https://doi.org/10.1186/s13765-020-00577-z
Yoo, S. Y., Kim, Y. J., & Yoo, G. (2020). Understanding the role of biochar in mitigating soil water stress in simulated urban roadside soil. Science of The Total Environment, 738, 139798. https://doi.org/10.1016/j.scitotenv.2020.139798
You, X., Yin, S., Suo, F., Xu, Z., Chu, D., Kong, Q., ... & Liu, L. (2021). Biochar and fertilizer improved the growth and quality of the ice plant (Mesembryanthemum crystallinum L.) shoots in a coastal soil of Yellow River Delta, China. Science of the Total Environment, 775, 144893. https://doi.org/10.1016/j.scitotenv.2020.144893
Younis, U., Malik, S. A., Rizwan, M., Qayyum, M. F., Ok, Y. S., Shah, M. H. R., ... & Ahmad, N. (2016). Biochar enhances the cadmium tolerance in spinach (
Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes.
Environmental Science and Pollution Research,
23, 21385-21394.
https://doi.org/10.1007/s11356-016-7344-3
Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., ... & Liu, X. (2016). Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.
Chemosphere,
142, 106-113.
https://doi.org/10.1016/j.chemosphere.2015.04.088
Zhang, D., Wang, T., Zhi, J., Zheng, Q., Chen, Q., Zhang, C., & Li, Y. (2020). Utilization of Jujube biomass to prepare biochar by pyrolysis and activation: Characterization, adsorption characteristics, and mechanisms for nitrogen.
Materials,
13(24), 5594.
https://doi.org/10.3390/ma13245594
Zheng, H., Wang, X., Chen, L., Wang, Z., Xia, Y., Zhang, Y., ... & Xing, B. (2018). Enhanced growth of halophyte plants in biochar‐amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation.
Plant, Cell & Environment,
41(3), 517-532.
https://doi.org/10.1111/pce.12944
Zeraatgar, H., Davarynejad, G. H., Moradinezhad, F., & Abedi, B. (2019). Preharvest application effect of salicylic acid and calcium nitrate on physicochemical characteristics of fresh jujube fruit (Ziziphus jujuba. Mill) during storage. Erwerbs-Obstbau, 61(2). https://doi.org/10.1007/s10341-018-0408-4
Zucco, M. A., Walters, S. A., Chong, S. K., Klubek, B. P., & Masabni, J. G. (2015). Effect of soil type and vermicompost applications on tomato growth. International Journal of Recycling of Organic Waste in Agriculture, 4, 135-141. https://doi.org/10.1007/ s40093-015-0093-3
Zulfiqar, F., Chen, J., Younis, A., Abideen, Z., Naveed, M., Koyro, H. W., & Siddique, K. H. (2021). Biochar, compost, and biochar–compost blend applications modulate growth, photosynthesis, osmolytes, and antioxidant system of medicinal plant Alpinia zerumbet. Frontiers in Plant Science, 12, 707061. https://doi.org/10.3389/fpls.2021.707061.