Document Type : Short Communication Article

Author

School of Agriculture & Allied Sciences, The Neotia University, Sarisha, West Bengal, India

Abstract

Purpose: Citrus plant exhibits a unique trait called polyembryony. In open-pollinated plants the pollen source of the plant remains unknown but it is assumed that the apomictic nucellar embryos mimic the genetic architecture of the mother plant. This assumption was exploited in the detection of true-to the type seedlings of polyembryonic Citrus sinensis plants for fruit quality retention and smooth maintenance of the orchards. Research Method: The randomly amplified polymorphic DNA (RAPD) technique was employed to distinguish nucellar and zygotic seedlings obtained from a selected Citrus sinensis plant marked in South 24- Parganas district of state of West Bengal in India. The embryos were extracted from a fruit and seedlings were raised in poly-house. To identify DNA marker for tracing the embryonic origin, ten vigorous seedlings marked in poly-house were used for RAPD analysis. DNA was extracted from three-month-old seedlings along with the mother plant and RAPD analysis was performed with 25 arbitrary decamer primers with a negative control. Findings: Four decamer primers OPQ15, OPAH02, OPAA02 and OPA11 were able to differentiate the sexual seedlings from the apomictic nucellar types. The total study took 48 hours for tracing the embryonic origin of the seedlings. Research limitations: This study could be extended with inclusion of more primers and screening of more fruits from diverse locations of India. Originality/Value: This process could act as a fast technique for preliminary identification of true-to the-type plants for quality control of Citrus fruit industry and sustainable nursery management.

Keywords

Main Subjects

Abdein, M., Imrahim, A.M., Mohamed, S.Y., Osman, S.O., Shamseldin, S.A., Maklad, M. F., ... & Qaoud, E.S.M. (2022). RAPD markers are associated with self-incompatibility characteristics as related to the number of seeds per fruit of some mandarin and clementine cultivars. Egyptian Journal of Horticulture49(2), 215-230. https://doi.org/10.21608/ejoh.2022.155513.1206
Aron, Y., Czosnek, H., & S. Gazit. (1998). Polyembryony in mango (Mangifera indica L.) is controlled by a single dominant gene. HortScience, 33(7), 1241-1242. https://doi.org/10.21273/hortsci.33.7.1241
Ashari, S., Aspinall, D., & Sedgley, M. (1988). Discrimination of zygotic and nucellar seedlings of five polyembryonic citrus rootstocks by isozyme analysis and seedling morphology. Journal of Horticultural Science, 63(1), 695-703. https://doi.org/10.1080/14620316.1988.11515912
Babu, K. N., Sheeja, T. E., Minoo, D., Rajesh, M. K., Samsudeen, K., Suraby, E. J., & Kumar, I. P. V. (2021). Random amplified polymorphic DNA (RAPD) and derived techniques. Molecular Plant Taxonomy: Methods and Protocols, 219-247. https://doi.org/10.1007/978-1-0716-0997-2_13
Bardakci, F., (2001). Random amplified polymorphic DNA (RAPD) markers. Turkish Journal of Biology25(2), pp.185-196. https://doi.org/10.1201/9781482294460-63
Carman, J.G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biological Journal of the Linnean Society, 61(1), 51-94. https://doi.org/10.1006/bijl.1996.0118
Dubey, A. K., Gupta, A., Sharma, R. M., & Sharma, N. (2020). Maximizing hybrid seedlings recovery and early identification of highly polyembryonic Acid Lime (Swing.) × Lemon (Burm.) hybrids using SSR markers. Journal of Horticultural Research28(2), 43-52. https://doi.org/10.2478/johr-2020-0024
El Khaled, D., Castellano, N. N., Gazquez, J. A., Salvador, R. G., & Manzano-Agugliaro, F. (2017). Cleaner quality control system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 140, 1749-1762. https://doi.org/10.1016/j.jclepro.2015.10.096
Kahangi, E. M., Lawton, M. A., & Kumar, C. A. C. Y. (2002). RAPD profiling of some banana varieties selected by small-scale farmers in Kenya. The Journal of Horticultural Science and Biotechnology, 77(4), 393-398. https://doi.org/10.1080/14620316.2002.11511511
Li, B., Lecourt, J., & Bishop, G. (2018). Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review. Plants, 7(1), 3. https://doi.org/10.3390/plants7010003
Li, F., Fu, C. and Li, Q. (2019). A simple genome walking strategy to isolate unknown genomic regions using long primer and RAPD primer. Iranian Journal of Biotechnology17(2). https://doi.org/10.21859/ijb.2183
Magwaza, L.S., Opara, U.L., Nieuwoudt, H., Cronje, P. J., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425-444. https://doi.org/10.1007/s11947-011-0697-1
Mondal, B., Pramanick, S., Saha, R., & Karmakar, M. (2015). Application of simple sequence repeat markers for demarcation of Citrus reticulata nucellar and hybrid seedlings. International Journal of Biosciences, 6(2), 128-133.
Nowaczyk, P. (1987). Spontaneous and induced polyembryony in pepper (Capsicum Annuum L.). Genetica Polonica, 28(1-2). https://doi.org/10.1021/acs.jafc.2c00659.s001
Peng-fei, Z., Yang Jun-qiang, Y., Yu-qin, S., Guo-Liang, W., & Yan-hui, C. (2006, August). Apomixis and new selections of walnut. In XXVII International Horticultural Congress-IHC2006: II International Symposium on Plant Genetic Resources of Horticultural crops. 760. (pp. 541-548). https://doi.org/10.17660/actahortic.2007.760.77
Pillay, M., Nwakanma, D. C., & Tenkouano, A. (2000). Identification of RAPD markers linked to A and B genome sequences in Musa L. Genome, 43(5), 763-767. https://doi.org/10.1139/g00-038
Santos, C. S., Cruz, R., Goncalves, D. B., Queiros, R., Bloore, M., Kovacs, Z., ... & Casal, S. (2021). Non-destructive measurement of the internal quality of citrus fruits using a portable NIR device. Journal of AOAC International, 104(1), 61-67. https://doi.org/10.1093/jaoacint/qsaa115
Schenk, J. J., Becklund, L. E., Carey, S. J., & Fabre, P. P. (2023). What is the “modified” CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol. Applications in Plant Sciences11(3), e11517. https://doi.org/10.1002/aps3.11517
Subudhi, E., Das, A., Joshi, R. K., Mohanty, S., & Nayak, S. (2016). Genetic diversity analysis and redundant identification in 48 core collections of Zingiber officinale Rosc. (Zingiberaceae). Brazilian Journal of Botany39, 869-883. https://doi.org/10.1007/s40415-016-0278-7
Tisserat, B. (1985). Embryogenesis, organogenesis and plant regeneration in Plant Cell Culture, a practical approach, edited by RA Dixon.Oxforf UK: IRL Press.
Wahyudi, D., Hapsari, L., & Sundari, S. (2020). RAPD analysis for genetic variability detection of mutant soybean (Glycine max (L.) Merr). Journal of Tropical Biodiversity and Biotechnology5(1), 68-77. https://doi.org/10.22146/jtbb.53653
Wakana, A., & Uemoto, S. (1987). Adventive embryogenesis in citrus I. The occurrence of adventive embryos without pollination or fertilization. American Journal of Botany, 74(4), 517-530. https://doi.org/10.1002/j.1537-2197.1987.tb08672.x
Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535. https://doi.org/10.1093/nar/18.22.6531
Xu, Y., Jia, H., Tan, C., Wu, X., Deng, X., & Xu, Q. (2022). Apomixis: genetic basis and controlling genes. Horticulture Research, 9, uhac150. https://doi.org/10.1093/hr/uhac150
Xu, Y., Jia, H., Wu, X., Koltunow, A. M., Deng, X., & Xu, Q. (2021). Regulation of nucellar embryony, a mode of sporophytic apomixis in Citrus resembling somatic embryogenesis. Current Opinion in Plant Biology59, 101984. https://doi.org/10.1016/j.pbi.2020.101984
Zarei, A., Erfani-Moghadam, J., & Mozaffari, M. (2017). Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. Biotechnology & Biotechnological Equipment31(2), 289-298. https://doi.org/10.1080/13102818.2016.1276414