Document Type : Original Article

Authors

1 Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Horticultural Sciences, Faryab University, Maymana, Afghanistan

3 Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Purpose: This study aimed to investigate the synergistic effects of plant growth-promoting rhizobacteria (PGPR) and auxin on olive microcutting rooting, and assess how PGPR and arbuscular mycorrhizal fungi (AMF) inoculation affect the growth of rooted olive plantlets. Research Method: In the first experiment, native PGPR inoculation with indole-3-butyric acid (IBA) and naphthaleneacetic acid (NAA) was tested to enhance rooting in olive microcuttings of 'Mission' cultivar. The second experiment evaluated six inoculation treatments (control, PGPR, Funneliformis mosseae, Claroideoglomus etunicatum, PGPR + F. mosseae, and PGPR + C. etunicatum) for their impact on rooted plantlet growth of 'Mission' and 'Koroneiki' cultivars. Findings: The study showed that PGPR and IBA treatment for 12 weeks resulted in a higher rooting rate (63.33%) and more roots per cutting (4.5) compared to the control. Additionally, PGPR and IBA combination for 16 weeks produced the longest roots (59.03 mm), indicating PGPR's role in enhancing root initiation and growth through auxin modulation. The results also revealed that the 'Mission' cultivar had higher AMF colonization than the 'Koroneiki' cultivar. The inoculation with F. mosseae significantly increased the number of lateral shoots and leaves, stem diameter, and root length in 'Koroneiki', while PGPR + F. mosseae enhanced lateral shoots, leaf number, and stem diameter in 'Mission'. The 'Koroneiki' cultivar also exhibited greater growth responses in stem and root weights, and plant height to AMF and PGPR inoculation. Research limitations: No limitations were identified. Originality/Value: These findings underscore the importance of genetic background in biofertilization strategies for olive cultivation, demonstrating the synergistic potential of PGPR and auxin in rooting and the cultivar-specific benefits of combined PGPR and AMF inoculation.

Keywords

Main Subjects

Ajdig, M., Chouati, T., Rached, B., Mbarki, A., Ouchari, L., Filali-Maltouf, A., Talbi, C., El Fahime, E., & Melloul, M. (2024). Plant-growth-promoting and antifungal assets of indigenous drought-tolerant rhizobacteria isolated from olive (Olea europaea L.) rhizosphere. Journal of Microbiology, Biotechnology and Food Sciences, e10588. https://doi.org/10.55251/jmbfs.10588
Azarmi-Atajan, F., & Sayyari-Zohan, M. H. (2020). Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria. Journal of Horticulture and Postharvest Research3(Special Issue-Abiotic and Biotic Stresses), 67-78. https://doi.org/10.22077/jhpr.2020.3013.1114
Azizi, S., Tabari Kouchaksaraei, M., Hadian, J., Fallah Nosrat Abad, A. R., Modarres Sanavi, S. A. M., Ammer, C., & Bader, M. K.-F. (2021). Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology and Management, 497, 119478. https://doi.org/10.1016/j.foreco.2021.119478
Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85-100. https://doi.org/10.1016/0098-8472(92)90034-y
Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Frontiers in Microbiology, 6, 1559. https://doi.org/10.3389/fmicb.2015.01559
Bizos, G., Papatheodorou, E. M., Chatzistathis, T., Ntalli, N., Aschonitis, V. G., & Monokrousos, N. (2020). The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europaea L.). Plants, 9(6), 743. https://doi.org/10.3390/plants9060743
Chenchouni, H., Mekahlia, M. N., & Beddiar, A. (2020). Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae, 261, 108969. https://doi.org/10.1016/j.scienta.2019.108969
Dalpe, Y. (1993). Vesicular-arbuscular mycorrhiza. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 287-301). CRC Press.
Dias, M. C., Silva, S., Galhano, C., & Lorenzo, P. (2024). Olive tree belowground microbiota: Plant growth-promoting bacteria and fungi. Plants, 13(13), 1848. https://doi.org/10.3390/plants13131848
Eftekhari, M., Alizadeh, M., & Ebrahimi, P. (2012). Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Industrial Crops and Products, 38, 160-165. https://doi.org/10.1016/j.indcrop.2012.01.022
Esna-Ashari, M., & Bahrami, S. (2018). Symbiosis effect of three micorhizal fungi (Glomus spp.) on growth and the absorption of some nutrient elements in rooted cuttings of three olive cultivars. Plant Productions, 41(1), 1-14. https://doi.org/10.22055/ppd.2017.13546
Estaún, V., Camprubí, A., Calvet, C., & Pinochet, J. (2003). Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. Journal of the American Society for Horticultural Science, 128(5), 767-775. https://doi.org/10.21273/jashs.128.5.0767
Ganjeali, A., & Kafi, M. (2007). Genotypic differences for allometric relationships between root and shoot characteristics in chickpea (Cicer arietinum L.). Pakistan Journal of Botany, 21, 1523-1531.
Ganz, T. R., Kailis, S. G., & Abbott, L. K. (2002). Mycorrhizal colonization and its effect on growth, phosphorus uptake and tissue phenolic content in the European olive (Olea europaea L.). Advances in Horticultural Science, 16, 109-116.
Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519-530. https://doi.org/10.1007/s00572-010-0333-3
Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012. https://doi.org/10.6064/2012/963401
Hadjouti, R., Kaci, H. M., Benzina, F., & Furze, J. N. (2022). Enhancing agriculture recovery of Phaseolus vulgaris L. and Cucurbita pepo L. with Olea europaea L. plant growth promoting rhizobacteria. Soil Research, 60(8), 850-863.
Hajiboland, R. (2013). Role of arbuscular mycorrhiza in amelioration of salinity. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt stress in plants: Signalling, omics and adaptations (pp. 301-354). Springer. https://doi.org/10.1007/978-1-4614-6108-1_13
Hanane, B., Abdelilah, M., Said, W., Abdelmajid, M., & Zainab, E. A. T. (2020). Improvement of growth and development of olive tree by mycorrhizal autochthonous inoculum. Research Journal of Biotechnology, 15(2), 2.
Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2018). Hartmann and Kester's plant propagation: Principles and practices. Pearson Education.
Khalil, H. A., & El-Ansary, D. O. (2020). Morphological, physiological and anatomical responses of two olive cultivars to deficit irrigation and mycorrhizal inoculation. European Journal of Horticultural Science, 85(1), 51-62. https://doi.org/10.17660/ejhs.2020/85.1.6
Lambardi, M., Fabbri, A., Micheli, M., & Vitale, A. (2023). Olive propagation and nursery. In R. L. Fernández-Escobar (Ed.), The olive (pp. 228-256). CABI.     https://doi.org/10.1079/9781789247350.0013
Liffourrena, A. S., & Lucchesi, G. I. (2018). Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. Journal of Biotechnology278, 28-33. https://doi.org/10.1016/j.jbiotec.2018.04.019
Maheshwari, D. K., Saraf, M., & Dheeman, S. (2019). Plant growth-promoting rhizobacteria (PGPR) as protagonists of ever-sustained agriculture: An introduction. In D. K. Maheshwari (Ed.), Field crops: Sustainable management by PGPR (pp. 1-10). Springer. https://doi.org/10.1007/978-3-030-30926-8_1
Maniriho, F., Aşkin, M., & Serdar, H. (2021). Effect of Indol-3-butyric acid associated with Bacillus subtilis bacteria on rooting of some Prunus spp rootstock hardwood cuttings. Journal of Horticulture and Postharvest Research4 (Special Issue-Plant Nutrition in Horticulture), 1-10. https://doi.org/10.22077/jhpr.2020.3335.1141
Marzban, M., Pourbabaee, A. A., Amoozegar, M. A., Naghavi, M. R., & Abbasi, A. (2019). Isolation and identification of rhizobacteria in a symbiotic relation with some non-cultivated legumes of Alborz province. Modern Genetics, 13(4), 445-457.‎
Meddich, A., Jaiti, F., Bourzik, W., El Asli, A., & Hafidi, M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468-474. https://doi.org/10.1016/j.scienta.2015.06.024
Nadarajah, K., & Abdul Rahman, N. S. N. (2023). The microbial connection to sustainable agriculture. Plants, 12(12), 2307. https://doi.org/10.3390/plants12122307
Pacurar, D. I., Perrone, I., & Bellini, C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151(1), 83-96. https://doi.org/10.1111/ppl.12171
Palla, M., Turrini, A., Cristani, C., Caruso, G., Avio, L., Giovannetti, M., & Agnolucci, M. (2020). Native mycorrhizal communities of olive tree roots as affected by protective green cover and soil tillage. Applied Soil Ecology, 149, 103520. https://doi.org/10.1016/j.apsoil.2020.103520
Rodrigues, M. Â., Piroli, L. B., Forcelini, D., Raimundo, S., da Silva Domingues, L., Cassol, L. C., Correia, C. M., & Arrobas, M. (2021). Use of commercial mycorrhizal fungi in stress-free growing conditions of potted olive cuttings. Scientia Horticulturae, 275, 109712. https://doi.org/10.1016/j.scienta.2020.109712
Russo, A., Vettori, L., Felici, C., Fiaschi, G., Morini, S., & Toffanin, A. (2008). Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. Journal of Biotechnology, 134(3-4), 312-319. https://doi.org/10.1016/j.jbiotec.2008.01.020
Sallami, A., Rachidi, F., Lahsini, A. I., El Khedri, H., Douira, A., El Modafar, C., Medraoui, L., & Filali-Maltouf, A. (2023). Plant growth promoting (PGP) performances and diversity of bacterial species isolated from olive (Olea europaea L.) rhizosphere in arid and semi-arid regions of Morocco. Journal of Pure and Applied Microbiology, 17(4), 2165-2178. https://doi.org/10.22207/jpam.17.4.13
Seifi, E., & Bekran, A. (2024). The effect of some edible coating treatments on shelf life of pomegranate arils cultivar “Malas-e Saveh”. Journal of Horticulture and Postharvest Research, 7(Special Issue-Postharvest Technologies), 35-46. https://doi.org/10.22077/jhpr.2023.6632.1327
Seifi, E., Teymoor, Y. S., Alizadeh, M., & Fereydooni, H. (2014). Olive mycorrhization: Influences of genotype, mycorrhiza, and growing periods. Scientia Horticulturae, 180, 214-219.
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., ... & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356. https://doi.org/10.3389/fpls.2013.00356
Visioli, F., & Galli, C. (2002). Biological properties of olive oil phytochemicals. Critical Reviews in Food Science and Nutrition, 42(3), 209-221.
Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 13(5), 249-256. https://doi.org/10.1007/s00572-003-0225-2
Ye, Q., Wang, H., & Li, H. (2022). Arbuscular mycorrhizal fungi improve growth, photosynthetic activity, and chlorophyll fluorescence of Vitis vinifera L. cv. Ecolly under drought stress. Agronomy, 12(7), 1563. https://doi.org/10.3390/agronomy12071563
Ziatabar Ahmadi, S. R., Seifi, E., Varasteh, F., & Akbarpour, V. (2024). Effect of biofertilizer inoculation on the growth and physiological traits of Red Angel and Wonderful pomegranate plantlets under salinity stress. Journal of Horticulture and Postharvest Research, 7(2), 171-182. https://doi.org/10.22077/jhpr.2024.7168.1356