Document Type : Original Article

Authors

1 Horticulture Research Institute, Agricultural Research Center, Giza, Egypt

2 Central Laboratory for Agricultural Climate, Agricultural Research Center, Giza, Egypt

Abstract

Purpose: Citrus is one of the most significant fruit crops in the world, and there are huge amounts of citrus in Egypt, especially orange. Shortage of water resources is the main challenge for citrus production, therefore, proper management of water resources for orange orchards is essential in Egypt. Research Method: The current study’s objective was to calculate the water footprint components of orange production in four governorates (Beheira, Gharbia, Menoufia, and Sharqiya) during 2020-2023. Findings: Data indicated that different irrigation rates affected tree growth, tree yield, total yield, yield efficiency, and fruit quality. Results showed that trees grown in the Salhyia area recorded the highest values of canopy ratio increment (42.21%), N leaf content (2.46%), yield efficiency (5.92 kg/m3), tree yield (132.00 kg/tree), total yield (52.80 tons/ha), TSS/TA ratio value (11.75), and the lowest acidity value (0.99 %). The highest values of leaf K content (1.76%), and vitamin C (42.83) were recorded in Al Mahalla El Kubra region, while the highest P leaf content (0.314%) was observed in Ashmoun district. Data showed that water use efficiency was lower in surface irrigation with a value of 3.71 kg orange/m3 water and higher in drip irrigation with a value of 3.81 kg orange/m3 water. Research limitations: There was no limitation. Originality/Value: Regarding water footprint components, data revealed that the drip irrigation system had lower green, grey and total water footprint values than surface irrigation. In contrast, the blue water footprint was the height under the drip irrigation system rather than the surface irrigation system.

Keywords

Main Subjects

Abobatta, W. F. (2019). Citrus varieties in Egypt: An impression. International Research Journal of Applied Sciences1, 63-66.‏
Abobatta, W. F. (2023). Citrus production in climate change era. In Cultivation for Climate Change Resilience, Volume 2 (pp. 68-93). CRC Press.‏ https://doi.org/10.1201/9781003351153-5
Annual Reports of the Statistical Institute and Agricultural Economic Research in Egypt, (2023).
Arabi, Y. A., Alizadeh A., & Mohammadian F. (2010). Study on ecological water footprint in agricultural section of Iran. Water and Soil, 23, 1–5.
Arafat, I. E., & Helal, M. E. M. (2021). Impacts of climate change on irrigation requirements and water productivity of citrus and olive crops in Egypt. Fundamental and Applied Agriculture6(2), 144-154.‏
Bankaji, I., Kouki, R., Dridi, N., Ferreira, R., Hidouri, S., Duarte, B., ... & Caçador, I. (2023). Comparison of digestion methods using atomic absorption spectrometry for the determination of metal levels in plants. Separations10(1), 40.‏ https://doi.org/10.3390/separations10010040
Bazrafshan, O., Dehghanpir, S., & Holisaz, A. (2018). Estimation of virtual water trade in the hormozgan province over the past decade. Desert Management5(10), 116-129.‏
Biratu, W., Abebe, H., Berhe, M., Tesfay, K., Gebremeskel, H., Tuemay, M., ... & Purba, J. H. (2023). Growth, henological, yield and yield components evaluation of sweet orange (Citrus sinensis L.) cultivars in Raya Azebo Woreda of Southern Tigra, Ethiopia AGROLAND The Agricultural Sciences Journal (e-Journal)10(1).‏ https://doi.org/10.22487/agroland.v0i...
Chapagain, A. K., & Hoekstra, A. Y. (2011). The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological economics70(4), 749-758.‏
Chapagain, A. K., Hoekstra, A. Y., & Savenije, H. H. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences10(3), 455-468.‏ https://doi.org/10.5194/hess-10-455-2006
Delin, S., & Stenberg, M. (2014). Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden. European Journal of Agronomy52, 291-296.‏ https://doi.org/10.1016/j.eja.2013.08.007
Fikry, A. M., Radhi, K. S., Abourehab, M. A., Abou Sayed-Ahmed, T. A., Ibrahim, M. M., Mohsen, F. S., ... & El-Saadony, M. T. (2022). Effect of inorganic and organic nitrogen sources and biofertilizer on murcott mandarin fruit quality. Life12(12), 2120.‏ https://doi.org/10.3390/life12122120
Freed, R. D. (1985). MSTAT-C Statistical Package, Version 2.0. 0. Crop and Soil Science Department, Michigan State University, East Lansing.‏
Galán-Martín, Á., Vaskan, P., Antón, A., Esteller, L. J., & Guillén-Gosálbez, G. (2017). Multi-objective optimization of rainfed and irrigated agricultural areas considering production and environmental criteria: a case study of wheat production in Spain. Journal of Cleaner Production140, 816-830.‏ https://doi.org/10.1016/j.jclepro.2016.06.099.
Hammami, A., & Mellouli, J. (2011, October). Drip irrigation scheduling of citrus orchard in Tunisia. In Proceedings of the 21st ICID International Congress of Irrigation and Drainage, Teheran, Iran (pp. 15-23).‏
Hoekstra, A., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2012). The water footprint assessment manual: Setting the global standard. Routledge.‏
Hoekstra, A. Y., Chapagain, A., Martinez-Aldaya, M., & Mekonnen, M. (2009). Water footprint manual: State of the art 2009.‏ http://waterfootprint.org/media/downloads/ WaterFootprintManual2009.pdf
Imbernón-Mulero, A., Martínez-Alvarez, V., Ben Abdallah, S., Gallego-Elvira, B., & Maestre-Valero, J. F. (2024). A comparative water footprint analysis of conventional versus organic citrus production: a case study in Spain. Agriculture14(7), 1029.‏ https://doi.org/10.3390/agriculture14071029
 Li, H., Mei, X., Wang, J., Huang, F., Hao, W., & Li, B. (2021). Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agricultural Water Management244, 106534.‏ https://doi.org/10.1016/j.agwat.2020.106534
Liao, L., Dong, T., Qiu, X., Rong, Y., Wang, Z., & Zhu, J. (2019). Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS One14(10), e0223356. ‏https://doi.org/10.1371/journal.pone.0223356
Lu, Y., Zhang, X., Chen, S., Shao, L., & Sun, H. (2016). Changes in water use efficiency and water footprint in grain production over the past 35 years: a case study in the North China Plain. Journal of cleaner production116, 71-79.‏
Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment548, 236-251.‏
Mekonnen, M. M., & Hoekstra, A. Y. (2020). Sustainability of the blue water footprint of crops. Advances in Water Resources143, 103679.‏
Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production: A first global assessment. Ecological indicators46, 214-223.‏ https://doi.org/10.1016/j.ecolind.2014.06.013.
Munro, S. A., Fraser, G. C., Snowball, J. D., & Pahlow, M. (2016). Water footprint assessment of citrus production in South Africa: A case study of the Lower Sundays River Valley. Journal of Cleaner Production135, 668-678.‏
Panigrahi, P., & Srivastava, A. K. (2016). Effective management of irrigation water in citrus orchards under a water scarce hot sub-humid region. Scientia Horticulturae210, 6-13.‏ https://doi.org/10.1016/j.scienta.2016.07.008
Rakha, A. M., Eisa, R. A., Abourayya, M. S., Kaseem, N. E., & Mahmoud, T. S. M. (2024). Effects of different sources of nitrogen fertilizer on the yield and fruit quality of persian lime under nubaria conditions. Applied Fruit Science66(5), 1929-1935.‏ https://doi.org/10.1007/s10341-024-01158-w
Sun, S. K., Wu, P. T., Wang, Y. B., & Zhao, X. N. (2012). Impacts of climate change on water footprint of spring wheat production: the case of an irrigation district in China. Spanish Journal of Agricultural Research10(4), 1176-1187.‏
Tozzini, L., Pannunzio, A., & Soria, P. T. (2021). Water footprint of soybean, maize and wheat in Pergamino, Argentina. Agricultural Sciences, 12(3), 305-323.  https://doi.org/10.4236/as.2021.123020 
Tuninetti, M., Tamea, S., D'Odorico, P., Laio, F., & Ridolfi, L. (2015). Global sensitivity of high‐resolution estimates of crop water footprint. Water Resources Research51(10), 8257-8272.‏ https://doi.org/10.1002/2015WR017148
Wallar, A., & Duncan, D. B., (1969). Multiple ranges and multiple tests. Biometrics 11, 1-24.‏
Yi, J., Gerbens-Leenes, P. W., & Aldaya, M. M. (2024). Crop grey water footprints in China: The impact of pesticides on water pollution. Science of the Total Environment935, 173464.‏ https://doi.org/10.1016/j.scitotenv.2024.173464
Youssef, E. A., Mahmoud, T. A., & Abo-Eid, M. A. (2023). Effect of some irrigation systems on water stress levels of Washington navel orange trees. Bulletin of the National Research Centre47(1), 163.‏ https://doi.org/10.1186/s42269-023-01140-8
Zekri, M., (2000). Citrus rootstocks affect scion nutrition, fruit quality, growth, yield and economical return. Fruits55(4), 231-239.‏