Document Type : Original Article

Authors

1 School of Biotechnology, International University, Ho Chi Minh City, Vietnam

2 Vietnam National University, Ho Chi Minh City, Vietnam

3 Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam

4 Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Vietnam

5 Center for Innovation and Technology Transfer, International University, Ho Chi Minh City, Vietnam

Abstract

Purpose: This study aimed to determine optimal storage conditions for preserving ten-year-old fresh Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.), a highly valued medicinal plant grown in the Ngoc Linh mountain region of Vietnam. Effective postharvest storage methods are important to maintain Ngoc Linh ginseng’s quality and phytochemical integrity. Research Method: Ethylene production and respiration rates of Ngoc Linh ginseng were evaluated, followed by a preliminary investigation in the dry season to understand the impact of temperature on its quality and shelf life. Finally, subsequent experiments were implemented in both seasons to determine the optimal storage temperature. Findings: Ethylene production and respiration rates of the Ngoc Linh ginseng were consistently low in both the dry and rainy seasons. The ginseng experienced severe dehydration and fungal decay at room temperature, while storage at 0 °C led to chilling injuries. Higher temperatures of 10 °C and 15 °C accelerated the deterioration of the ginseng. In contrast, storage at 3 °C and 6 °C significantly extended the ginseng's shelf life. A follow-up experiment confirmed that 3 °C was the most effective for retaining freshness, skin brightness, visual sensory attributes, and total saponin content in Ngoc Linh ginseng in both seasons over 35 days. Research limitations: No limitations were identified. Originality/Value: This is the first study on extending the fresh storage of Ngoc Linh ginseng, a highly valuable herb of Vietnam. Identifying 3 °C as the optimal storage temperature provides a potential standard for fresh ginseng preservation and supports future research and commercial applications.

Main Subjects

Ali, S., Mir, S. A., Dar, B. N., & Ejaz, S. (Eds.). (2024). Sustainable postharvest technologies for fruits and vegetables. CRC Press. https://doi.org/10.1201/9781003370376
Ambuko, J., Wanjiru, F., Karithi, E., Hutchinson, M., Chemining’wa, G., Mwachoni, E., Hansen, B., Wasilwa, L., Owino, W., & Nenguwo, N. (2018). Cold chain management in horticultural crops value chains: Options for smallholder farmers in Africa. Acta Horticulturae, 1225, 85–91. https://doi.org/10.17660/ActaHortic.2018.1225.9
Cheng, Y., Gao, C., Luo, S., Yao, Z., Ye, Q., Wan, H., Zhou, G., & Liu, C. (2023). Effects of storage temperature at the early postharvest stage on the firmness, bioactive substances, and amino acid compositions of chili pepper (Capsicum annuum L.). Metabolites, 13(7), 820. https://doi.org/10.3390/metabo13070820
Christensen, L. P. (2009). Ginsenosides: Chemistry, biosynthesis, analysis, and potential health effects. Advances in Food and Nutrition Research, 55, 1–99. https://doi.org/10.1016/S1043-4526(08)00401-4
Chung, H. S., Lee, H. J., & Moon, K. (2010). Effects of ethylene absorbent on quality changes of fresh ginger rhizomes during modified atmosphere storage. Korean Journal of Horticultural Science and Technology, 28(1), 82–88. https://koreascience.kr/article/JAKO201010102405064.page
Couey, H. M. (1982). Chilling injury of crops of tropical and subtropical origin. HortScience, 17(2), 162–165. https://doi.org/10.21273/HORTSCI.17.2.162
Dhall, R. K., & Dhall, R. K. (2013). Ethylene in post-harvest quality management of horticultural crops: a review. Research & Reviews: A Journal of Crop Science and Technology, 2(2), 9–25. Retrieved from https://www.researchgate.net/publication/292151893
Duc, N. M., Kasai, R., Ohtani, K., Ito, A., Yamasaki, K., Nham, N. T., & Tanaka, O. (1996). New saponins from Vietnamese ginseng: Highlights on biogenesis of dammarane triterpenoids. In Waller, G. R., & Yamasaki, K. (Eds.), Saponins used in traditional and modern medicine. Advances in Experimental Medicine and Biology (Vol. 404, pp. 129–149). Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1367-8_13
Eriko, Y., Keiko, T., Daisuke, H., Wenzhong, H., & Toshitaka, U. (2001, October). Effect of temperature on the respiration rate of some vegetables. In IFAC Proceedings Volumes, 34(28) Tokyo, Japan. (pp. 205–210). Elsevier. https://doi.org/10.1016/s1474-6670(17)32849-5
Fugate, K. K., Suttle, J. C., & Campbell, L. G. (2010). Ethylene production and ethylene effects on respiration rate of postharvest sugarbeet roots. Postharvest Biology and Technology, 56(1), 71–76. https://doi.org/10.1016/j.postharvbio.2009.12.004
Gao, K., Liu, Z., Chen, J., Chen, L., Qi, Y., Wang, Z., & Sun, Y. (2019). Effects of different substrates on low-temperature storage of fresh ginseng. Journal of the Science of Food and Agriculture, 99(14), 6258–6266. https://doi.org/10.1002/jsfa.9899
Hu, W. Z., Jiang, A. L., & Qi, H. P. (2014). Physiological behavior and quality of fresh ginseng stored in modified atmospheres generated by several package films. Journal of Food Science and Technology, 51(12), 3862–3869. https://doi.org/10.1007/s13197-012-0922-6
Jeon, B. S., & Lee, C. Y. (1999). Shelf-life extension of American fresh ginseng by controlled atmosphere storage and modified atmosphere packaging. Journal of Food Science, 64(2), 328–331. https://doi.org/10.1111/j.1365-2621.1999.tb15893.x
Jin, T. Z., Huang, M., Niemira, B. A., & Cheng, L. (2016). Shelf life extension of fresh ginseng roots using sanitizer washing, edible antimicrobial coating, and modified atmosphere packaging. International Journal of Food Science and Technology, 51(9), 2132–2139. https://doi.org/10.1111/ijfs.13201
Kahramanoglu, I. (Ed.). (2023). Postharvest physiology and handling of horticultural crops (1st ed.). Boca Raton: CRC Press. https://doi.org/10.1201/9781003452355
Kandasamy, P. (2022). Respiration rate of fruits and vegetables for modified atmosphere packaging: A mathematical approach. Journal of Postharvest Technology, 10(1), 88–102. Retrieved from https://www.researchgate.net/publication/358532606
Keller, N., Ducamp, M. N., Robert, D., & Keller, V. (2013). Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chemical Reviews, 113(7), 5029–5070. https://doi.org/10.1021/cr900398v
Mahangade, P. S., Mani, I., Beaudry, R., Müller, N., & Chopra, S. (2020). Using amaranth as a model plant for evaluating imperfect storages: Assessment of solar-refrigerated and evaporatively-cooled structures in India. HortScience, 55(11), 1759–1765. https://doi.org/10.21273/HORTSCI15249-20
Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217. https://doi.org/10.1016/0925-5214(95)00042-9
Nguyen, T. H., & Phuong, T. T. (2021). Vietnamese ginseng (Panax vietnamensis Ha and Grushv.): Phylogenetic, phytochemical, and pharmacological profiles. Pharmacognosy Reviews, 13(26), 59–62. https://doi.org/10.5530/phrev.2019.2.5
Nguyen, N., Nguyen, T., Le Hong, P., Ta, T. K. H., Phan, B. T., Ngoc, H. N. T., Bich, H. P. T., Yen, N. D., Van, T. V., Nguyen, H. T., & others. (2023). Application of coating chitosan derivatives (N,O–Carboxymethyl chitosan/chitosan oligomer saccharide) in combination with polyvinyl alcohol solutions to preserve fresh Ngoc Linh ginseng quality. Foods, 12(21), 1–22. https://doi.org/10.3390/foods12214012
Park, M. H., Shin, Y. S., Kim, S. J., & Kim, J. G. (2013). Effect of 1-methylcyclopropene treatment on extension of freshness and storage potential of fresh ginseng. Korean Journal of Horticultural Science and Technology, 31(3), 308–316. http://dx.doi.org/10.7235/hort.2013.12212
Pech, J. C., Purgatto, E., Bouzayen, M., & Latché, A. (2012). Ethylene and fruit ripening. In Annual Plant Reviews Volume 44: The Plant Hormone Ethylene (McManus M. T. Ed.), Wiley-Blackwell, Oxford, UK, 275–304. https://doi.org/10.1002/9781118223086.ch11
Ratan, Z. A., Haidere, M. F., Hong, Y. H., Park, S. H., Lee, J. O., Lee, J., & Cho, J. Y. (2021). Pharmacological potential of ginseng and its major component ginsenosides. Journal of Ginseng Research, 45(2), 199–210. https://doi.org/10.1016/j.jgr.2020.02.004
Rosenfeld, H. J., Røed Meberg, K., Haffner, K., & Sundell, H. A. (1999). MAP of highbush blueberries: Sensory quality in relation to storage temperature, film type, and initial high oxygen atmosphere. Postharvest Biology and Technology, 16(1), 27–36. https://doi.org/10.1016/S0925-5214(98)00102-1
Saftner, R., Polashock, J., Ehlenfeldt, M., & Vinyard, B. (2008). Instrumental and sensory quality characteristics of blueberry fruit from twelve cultivars. Postharvest Biology and Technology, 49(1), 19–26. https://doi.org/10.1016/j.postharvbio.2008.01.008
Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292. https://doi.org/10.1016/S0925-5214(98)00091-X
Silip, J. J., Supramaniam, J., Mijan, S., Gobilik, J., & Elsabagh, A. S. (2022). The effect of hydro cooling time, storage temperature, and storage duration on Saba banana. Journal of Physics: Conference Series, 2314(1). https://doi.org/10.1088/1742-6596/2314/1/012015
Tien, N. Q. D., Ma, X., Man, L. Q., Chi, D. T. K., Huy, N. X., Nhut, D. T., Rombauts, S., Ut, T., & Loc, N. H. (2021). De novo whole-genome assembly and discovery of genes involved in triterpenoid saponin biosynthesis of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.). Physiology and Molecular Biology of Plants, 27, 2215–2229. https://doi.org/10.1007/s12298-021-01076-1
Titova, M. V., Lunkova, M. K., Tyurina, T. M., Prudnikova, O. N., Popova, E. V., Klychnikov, O. I., Metalnikov, P. S., Ikhalaynen, Y. A., Vasileva, E. N., Rodin, I. A., & others. (2024). Suspension cell cultures of Panax vietnamensis as a biotechnological source of ginsenosides: Growth, cytology, and ginsenoside profile assessment. Frontiers in Plant Science, 15, 1–15. https://doi.org/10.3389/fpls.2024.1349494
Vu-Huynh, K. L., Nguyen, H. T., van Le, T. H., Ma, C. T., Lee, G. J., Kwon, S. W., Park, J. H., & Nguyen, M. D. (2020). Accumulation of saponins in underground parts of Panax vietnamensis at different ages analyzed by HPLC-UV/ELSD. Molecules, 25(13), 3086. https://doi.org/10.3390/molecules25133086
Watkins, C. B. (2007). The effect of 1-MCP on the development of physiological storage disorders in horticultural crops. Stewart Postharvest Review, 3(2), 11. https://doi.org/10.2212/spr.2007.2.11
Whang, J. H., Yu, K. W., Park, S. S., Koh, J. H., Oh, S. H., Suh, H. J., & Lee, S. H. (2008). Prevention of quality changes in the cultured wild ginseng during storage. Journal of the Korean Society of Food Science and Nutrition, 37(10), 1312–1317. https://doi.org/10.3746/jkfn.2008.37.10.1312
Wills, R. B. H., & Golding, J. (Eds.). (2016). Advances in postharvest fruit and vegetable technology. Boca Raton, Florida: CRC Press. https://doi.org/10.1201/b18489
Wills, R. B. H., & Scott, K. J. (1971). Chemical induction of low temperature breakdown in apples. Phytochemistry, 10(8), 1783–1785. https://doi.org/10.1016/S0031-9422(00)86438-9
Wu, J., Tang, R., & Fan, K. (2024). Recent advances in postharvest technologies for reducing chilling injury symptoms of fruits and vegetables: A review. Food Chemistry: X, 21, 101080. https://doi.org/10.1016/j.fochx.2023.101080
Zhang, J., Cheng, D., Wang, B., Khan, I., & Ni, Y. (2017). Ethylene control technologies in extending postharvest shelf life of climacteric fruit. Journal of Agricultural and Food Chemistry, 65(34), 7308–7319. https://doi.org/10.1021/acs.jafc.7b02616