Document Type : Original Article

Authors

1 Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

3 Department of Agronomy, Faculty of Agriculture, University of Birjand, Birjand, Iran

Abstract

Purpose: The microbial load and nutritional value of products have always been important issues in human nutrition. This research aimed to identify and determine the microbial levels and total antioxidant contents of dry, seedless barberry fruits collected from different regions of South Khorasan Province, which is the main production area in Iran. Research Method: Fruit samples were prepared from four regions, including the Birjand region, Zirkoh region, Darmian region, and Qaen region. Chemical traits and microbial analysis were evaluated. The microbial load was determined and compared with the maximum limit (ML) standards. Findings: Microbiological analyses of fruits from the Birjand region, Zirkoh region, Darmian region and Qaen region revealed that, fortunately, E. coli bacteria were not found in any of the studied regions. However, the highest amounts of total aerobic bacteria (4.60 log10 CFU.g-1) and yeast/mold bacteria (4.17 log10 CFU.g-1) were obtained from fruits prepared from the Darmian region, which was higher than the standard defined by the Food and Drug Organization of Iran. The highest coliform level was related to the fruits of the Darmian region (1.69 log10 CFU.g-1) and the Qaen region (1.69 log10 CFU.g-1), which were lower than those of the MLs. Considering the standards defined with the MLs in Iran, the microbial load regulations in Iran exhibit a higher level of stringency than those in other nations do. Additionally, chemical analyses revealed that the highest amount of total soluble solids and the lowest pH of fruit juice were from the fruits of the Birjand region. The highest amount of titratable acidity and the highest antioxidant activity were related to the fruits of the Qaen region. Research limitations: No limitations were found. Originality/Value: The nutritional value of barberry fruit is the highest in the Qaen region, followed by the Birjand region. Although the pre- and postharvest stages can affect the microbial load of products, storage conditions during the drying period of seedless barberry fruits play a crucial role in determining the microbial load.

Keywords

Main Subjects

Abdel-Moneim, A., Ceuppens, S., El-Tahan, F., & Uyttendaele, M. (2014). Microbiological safety of strawberries and lettuce for domestic consumption in Egypt. Journal of Food Processing & Technology, 5(3), 1-7. http://dx.doi.org/10.4172/2157-7110.1000308
Adewoyin, O. B. (2023). Pre-harvest and postharvest factors affecting quality and shelf life of harvested produce. In new Advances in Postharvest Technology. IntechOpen.‏ 1-20. http://dx.doi.org/10.5772/intechopen.111649
Alavi, N., & Mazloumzadeh, S. M. (2012). Effect of harvesting and drying methods of seedless barberry on some fruit quality. Journal of the Saudi Society of Agricultural Sciences, 11(1), 51-55.‏ http://dx.doi.org/10.1016/j.jssas.2011.08.003
Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: an overview. International Journal of Environmental Research and Public Health, 10(12), 6235-6254.‏ http://dx.doi.org/10.3390/ijerph10126235
Alp, D., & Bulantekin, Ö. (2021). The microbiological quality of various foods dried by applying different drying methods: a review. European Food Research and Technology, 247(6), 1333-1343. http://dx.doi.org/10.1007/s00217-021-03731-z
Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. http://dx.doi.org/10.1016/j.foodchem.2011.11.066
Araujo, W. L., NUNES‐NESI, A. D. R. I. A. N. O., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21.‏ http://dx.doi.org/10.1111/j.1365-3040.2011.02332.x
Ardestani, S. B., Sahari, M. A., & Barzegar, M. (2015). Effect of extraction and processing conditions on organic acids of barberry fruits. Journal of Food Biochemistry, 39(5), 554-565.‏ http://dx.doi.org/10.1111/jfbc.12158
Ardestani, S. B., Sahari, M. A., Barzegar, M., & Abbasi, S. (2013). Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris. Journal of Food and Pharmaceutical Sciences, 1(3), 60-67. https://doi.org/10.14499/jfps.
Artimová, R., Játiová, M., Baumgartnerová, J., Lipková, N., Petrová, J., Maková, J., & Medo, J. (2023). Microbial communities on samples of commercially available fresh-consumed leafy vegetables and small berries. Horticulturae, 9(2), 150.‏ http://dx.doi.org/10.3390/horticulturae9020150
Aslam, H., Nadeem, M., Shahid, U., Ranjha, M. M. A. N., Khalid, W., Qureshi, T. M., & Awuchi, C. G. (2023). Physicochemical characteristics, antioxidant potential, and shelf stability of developed roselle–fig fruit bar. Food Science & Nutrition, 11(7), 4219-4232.‏ http://dx.doi.org/10.1002/fsn3.3436
Aycicek, H., Oguz, U., & Karci, K. (2006). Determination of total aerobic and indicator bacteria on some raw eaten vegetables from wholesalers in Ankara, Turkey. International Journal of Hygiene and Environmental Health, 209(2), 197-201. http://dx.doi.org/10.1016/j.ijheh.2005.07.006
Babič, M. N., Zalar, P., Ženko, B., Džeroski, S., & Gunde-Cimerman, N. (2016). Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecology, 20, 30-39.‏ http://dx.doi.org/10.1016/j.funeco.2015.10.001
Balandari, A., Azizi, M., & Khodabandeh, M. (2023). Biochemical properties of twelve indigenous barberry (Berberis spp.) genotypes. Journal of Horticultural Science, 37(2), 293-306.
Bărbulescu, I. D., Dumitrache, C., DIGUŢĂ, C. F., Begea, M., MATEI, P. M., Frîncu, M., & Teodorescu, R. I. (2022). Evolution at the microfermenter level of the growth dynamics of Saccharomyces cerevisiae and Starmella bacillaris yeasts with potential for use in winemaking at the pietroasa winery. AgroLife Scientific Journal, 11(2), 9-16. http://dx.doi.org/10.17930/agl202221
Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in Food Science and Food Safety, 3(1), 1-20. http://dx.doi.org/10.1111/j.1541-4337.2004.tb00057.x
Behrad, Z., Sefidkon, F., Ghasemzadeh, H., Rezadoost, H., & Balandary, A. (2023). Determination of phenolic compounds and antioxidant activities of 55 Iranian Berberis genotypes. Journal of Medicinal Plants and By-product, 12(2), 181-189.‏
Berthold-Pluta, A., Garbowska, M., Stefańska, I., Stasiak-Różańska, L., Aleksandrzak-Piekarczyk, T., & Pluta, A. (2021). Microbiological quality of nuts, dried and candied fruits, including the prevalence of Cronobacter spp. Pathogens, 10(7), 900.‏ http://dx.doi.org/10.3390/pathogens10070900
Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., & Ter Kuile, B. H. (2013). Low--water activity foods: increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76(1), 150-172. http://dx.doi.org/10.4315/0362-028x.jfp-12-211
Bideli, N., Ahmadi-Roshan, M., & Berenji Ardestani, S. (2022). Effects of gamma irradiation, osmotic and freezing processes on chemical, microbial, and pest characteristics of dried Iranian barberry fruit during storage. Acta Alimentaria, 51(4), 523-533. http://dx.doi.org/10.1556/066.2022.00141
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.‏ http://dx.doi.org/10.1038/1811199a0
Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., & Uyttendaele, M. (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1056-1066. http://dx.doi.org/10.1111/1541-4337.12224
Brown, M. H. (1991). Acidulants and low pH. Food preservatives.‏ Journal of Antibacterial and Antifungal Agents, 23(4), 241-250.
Bublyk, M. O., Fryziuk, L. A., & Levchuk, L. M. (2014). Fruit crop production distribution in Ukraine: A research note. Chemistry and Chemical Biology: Methodologies and Applications/ed. R. Joswik, AA Dalinkevich. Toronto, 207-214. http://dx.doi.org/10.1201/b17413-27
Caprio, J. M., & Quamme, H. A. (2006). Influence of weather on apricot, peach and sweet cherry production in the Okanagan Valley of British Columbia. Canadian Journal of Plant Science, 86(1), 259-267.‏ http://dx.doi.org/10.4141/p05-032
Carlsen, M. H., Halvorsen, B. L., Holte, K., Bøhn, S. K., Dragland, S., Sampson, L., & Blomhoff, R. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9, 1-11. http://dx.doi.org/10.1186/1475-2891-9-3
Cendrowski, A., Kraśniewska, K., Przybył, J. L., Zielińska, A., & Kalisz, S. (2020). Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules, 25(6), 1365. http://dx.doi.org/10.3390/molecules25061365
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. http://dx.doi.org/10.1128/cmr.12.4.564
Dorostkar, M., Moradinezhad, F., & Ansarifar, E. (2022). Influence of active modified atmosphere packaging pre-treatment on shelf life and quality attributes of cold stored apricot fruit. International Journal of Fruit Science, 22(1), 402-413. http://dx.doi.org/10.1080/15538362.2022.2047137
Ekanem, J. O., & Ekanem, O. O. (2019). The effect of natural and artificial preservatives and storage temperature on the pH and microbial load of freshly produced apple (Malus domestica) juice. Agro-Science, 18(1), 16-21.‏ http://dx.doi.org/10.4314/as.v18i1.3
El-Araby, A., Azzouzi, A., Ayam, I. M., Samouh, K. F., & Errachidi, F. (2023). Survey on technical management of strawberries in Morocco and evaluation of their post-harvest microbial load. Frontiers in Microbiology, 13, 1115340.‏ http://dx.doi.org/10.3389/fmicb.2022.1115340
El-Dengawy, E. F. A., Samaan, L. G., El-Shobaky, M. A., El-Kadi, S. M., & Saleh, M. A. A. (2018). Evaluation of rutability, quality and microbial load in Hayani date palm fruits during cold storage as affected by applying some safe postharvest treatments. Journal of Plant Production, 9(10), 805-813.‏ http://dx.doi.org/10.21608/jpp.2018.36436
Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., & Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64(6), 1451-1469.‏ http://dx.doi.org/10.1093/jxb/ert035
Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J. G., & Walker, R. P. (2015). The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents-a review. Revista Chapingo. Serie Horticultura, 21(2), 97-128. http://dx.doi.org/10.5154/r.rchsh.2015.01.004
Feng, P., Weagant, S. D., Grant, M. A., Burkhardt, W., Shellfish, M., & Water, B. (2002). BAM: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological Analytical Manual, 13(9), 1-13
Firdous, N., Moradinezhad, F., Farooq, F., & Dorostkar, M. (2023). Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food Chemistry, 407, 135186.‏ http://dx.doi.org/10.1016/j.foodchem.2022.135186
Fleet, G. H. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86(1-2), 11-22.‏ http://dx.doi.org/10.1016/s0168-1605(03)00245-9
Gao, Y., Kan, C., Wan, C., Chen, C., Chen, M., & Chen, J. (2018). Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde-chitosan coating. Scientia Horticulturae, 239, 80-86.‏ http://dx.doi.org/10.1016/j.scienta.2018.05.012
Gautier, H., Rocci, A., Buret, M., Grasselly, D., & Causse, M. (2005). Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality. Journal of the Science of Food and Agriculture, 85(6), 1009-1016. http://dx.doi.org/10.1002/jsfa.2060
Gilbert, R. J., De Louvois, J., Donovan, T., Little, C., Nye, K., Ribeiro, C. D., & Bolton, F. J. (2000). Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products. Communicable Disease and Public Health, 3(3), 163-167.‏
Gilliland, S. E., & Speck, M. L. (1967). Mechanism of the bactericidal action produced by electrohydraulic shock. Applied Microbiology, 15(5), 1038-1044.‏ http://dx.doi.org/10.1128/aem.15.5.1038-1044.1967
Gogo, E. O., Opiyo, A. M., Hassenberg, K., Ulrichs, C., & Huyskens-Keil, S. (2017). Postharvest UV-C treatment for extending shelf life and improving nutritional quality of African indigenous leafy vegetables. Postharvest Biology and Technology, 129, 107-117.‏ http://dx.doi.org/10.1016/j.postharvbio.2017.03.019
Gómez-López, V. M., Ragaert, P., Jeyachchandran, V., Debevere, J., & Devlieghere, F. (2008). Shelf-life of minimally processed lettuce and cabbage treated with gaseous chlorine dioxide and cysteine. International Journal of Food Microbiology, 121(1), 74-83.‏ http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.036
Halablab, M. A., Sheet, I. H., & Holail, H. M. (2011). Microbiological quality of raw vegetables grown in Bekaa Valley, Lebanon.‏ American Journal of Food Technology, 6(2), 129-139. http://dx.doi.org/10.3923/ajft.2011.129.139
Henie, E. F. P., Zaiton, H., & Suhaila, M. (2009). Bacterial membrane disruption in food pathogens by Psidium guajava leaf extracts. International Food Research Journal, 16(3), 297-311.‏
Hosseini, A., Moradinezhad, F., Khayyat, M., & Aminifard, M. H. (2021). Influence of foliar application of calcium nitrate and potassium nitrate on qualitative and quantitative traits of seedless barberry (Berberis vulgaris L.). Erwerbs-Obstbau, 63(2), 151-161. http://dx.doi.org/10.1007/s10341-021-00553-x
Hyun, J. E., Kim, J. Y., Kim, E. M., Kim, J. C., & Lee, S. Y. (2019). Changes in microbiological and physicochemical quality of dried persimmons (Diospyros kaki Thunb.) stored at various temperatures. Journal of Food Quality, 2019(1), 6256409. http://dx.doi.org/10.1155/2019/6256409
ISIRI. (2013). Institute of Standards and Industrial Research of Iran, Microbioligy of food and animal feeding stuffs - Enumeration of Yeast and mould -Colony count techni in products with water activity Less than or equal to 0.6. ISIRI no 10899 -3. 1st Edition, ISIRI: 2013 [in Persian]. http://dx.doi.org/10.3403/30151271u
Ivanova, I., Serdiuk, M., Malkina, V., Bandura, I., Kovalenko, I., Tymoshchuk, T., & Omelian, A. (2021). The study of soluble solids content accumulation dynamics under the influence of weather factors in the fruits of cherries. Slovak Journal of Food Sciences, 15, 350-359.‏ http://dx.doi.org/10.5219/1554
Jang, A. R., Han, A., Lee, S., Jo, S., Song, H., Kim, D., & Lee, S. Y. (2021). Evaluation of microbiological quality and safety of fresh-cut fruit products at retail levels in Korea. Food Science and Biotechnology, 30(10), 1393-1401.‏ http://dx.doi.org/10.1007/s10068-021-00974-0
Javadzadeh, S. M. (2013). Effect of different methods of harvesting, drying and time on losses seedless barberry (Berberis vulgaris L).‏ International Journal of Agronomy and Plant Production, 4(2), 254-260.
Jayaraman, K. S., & Gupta, D. D. (2020). Drying of fruits and vegetables. In Handbook of industrial drying (pp. 643-690). CRC Press.‏ http://dx.doi.org/10.1201/9780429289774-21
Jideani, A. I., Silungwe, H., Takalani, T., Omolola, A. O., Udeh, H. O., & Anyasi, T. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1), 41-67.‏ http://dx.doi.org/10.1080/10942912.2020.1866597
Kadam, D. M., Nangare, D. D., & Oberoi, H. S. (2009). Influence of pre‐treatments on microbial load of stored dehydrated onion slices. International Journal of Food Science & Technology, 44(10), 1902-1908.‏ http://dx.doi.org/10.1111/j.1365-2621.2009.01980.x
Koyuncu, F. (2004). Organic acid composition of native black mulberry fruit. Chemistry of Natural Compounds, 40, 367-369.‏ http://dx.doi.org/10.1023/b:conc.0000048249.44206.e2
Kusano, C., & Ferrari, B. (2008). Total antioxidant capacity: a biomarker in biomedical and nutritional studies. Journal of Molecular Cell Biology, 7(1), 1-15.‏
Kuźniar, P., Belcar, J., Zardzewiały, M., Basara, O., & Gorzelany, J. (2022). Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules, 27(23), 8231.‏ http://dx.doi.org/10.3390/molecules27238231
Lambert, P. A. (1995). Introductory Microbiology-by T. Gross, J. Faull, S. Ketteridge and D. Springham Chapman & Hall, 1995. &19. 99 pbk (xiv+ 414 pages) ISBN 0 412 45300 2. Trends in Microbiology, 3(7), 288-288.‏ http://dx.doi.org/10.1007/978-1-4899-7194-4
Lee, J., Whang, J. B., Youn, N. R., Lee, S. Y., Lee, H. J., Kim, Y. J., & Koh, K. H. (2009). Antioxidant and oxygen radical scavenging capacities of the extracts of pear cactus, mulberry and Korean black raspberry fruits. Journal of Food Science and Nutrition, 14(3), 188-194. http://dx.doi.org/10.3746/jfn.2009.14.3.188
Lez-Altozano, P. G., & Castel, J. R. (1999). Regulated deficit irrigation inClementina de Nules' citrus trees. I. Yield and fruit quality effects. The Journal of Horticultural Science and Biotechnology, 74(6), 706-713. http://dx.doi.org/10.1080/14620316.1999.11511177
Li, Y., Wu, M., Zhao, D., Wei, Z., Zhong, W., Wang, X., & Li, Z. (2015). Electroporation on microchips: the harmful effects of pH changes and scaling down. Scientific Reports, 5(1), 17817. http://dx.doi.org/10.1038/srep17817
López-Alarcón, C., & Denicola, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta, 763, 1-10. http://dx.doi.org/10.1016/j.aca.2012.11.051
Lu, H. J., Breidt Jr, F., Pérez-Díaz, I. M., & Osborne, J. A. (2011). Antimicrobial effects of weak acids on the survival of Escherichia coli O157: H7 under anaerobic conditions. Journal of Food Protection, 74(6), 893-898. http://dx.doi.org/10.4315/0362-028x.jfp-10-404
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review. International Journal of Molecular Sciences, 22(9), 4945.‏ http://dx.doi.org/10.3390/ijms22094945
Macori, G., Gilardi, G., Bellio, A., Bianchi, D. M., Gallina, S., Vitale, N., & Decastelli, L. (2018). Microbiological parameters in the primary production of berries: a pilot study. Foods, 7(7), 105.‏ http://dx.doi.org/10.3390/foods7070105
Mathur, A., Joshi, A., & Harwani, D. (2014). Microbial contamination of raw fruits and vegetables. Internet Journal of Food Safety, 16, 26-28.‏
Mongi, R. J. (2023). Physicochemical properties, microbial loads and shelf life prediction of solar dried mango (Mangifera indica) and pineapple (Ananas comosus) in Tanzania. Journal of Agriculture and Food Research, 11, 100522.‏ http://dx.doi.org/10.1016/j.jafr.2023.100522
Moradinezhad, F., Khayyat, M., & Maraki, Z. (2018). Changes in anthocyanin and fruit quality attributes of barberry (Berberis vulgaris L.) grown in different altitude during growth and maturation. Journal of Agricultural Sciences–Sri Lanka, 13(3). http://dx.doi.org/10.4038/jas.v13i3.8396
Moradinezhad, F., Mehregan, M., & Jahani, M. (2019). Physicochemical traits of seedless barberry (Berberis vulgaris L.) fruits stored under refrigeration as affected by heat and calcium chloride treatments. ‏Agronomical Research in Moldavia, 51(4), 73-86. http://dx.doi.org/10.2478/cerce-2018-0037
Moradinezhad, F., Dorostkar, M., Niazmand, R., & Doraki, G. (2024). A comprehensive study of qualitative and biochemical characteristics of dried seedless barberry fruits from different regions of South Khorasan Province, Iran. Journal of Horticulture and Postharvest Research, 7(4), 345-360. https://doi.org/10.22077/jhpr.2024.7912.1399
Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Microbiological Methods, 66(2), 183-193.‏ http://dx.doi.org/10.1016/j.mimet.2006.02.017
Mritunjay, S. K., & Kumar, V. (2015). Fresh farm produce as a source of pathogens: a review. Research Journal of Environmental Toxicology, 9(2), 59-70.‏ http://dx.doi.org/10.3923/rjet.2015.59.70
Ndjomgoue-Yossa, A. C., Nanseu-Njiki, C. P., & Ngameni, E. (2022). Effect of pH on Escherichia coli removal by electrocoagulation and elimination kinetics after treatment. Journal of Chemistry, 2022(1), 5249368. http://dx.doi.org/10.1155/2022/5249368
Negi, P. S. (2012). Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156(1), 7-17.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.006
Nizam, L. M., Ardawati, A. N., Nurmahani, M. M., Roshita, I., & Zaiton, H. (2019). Microbiological quality and sensory evaluation of partially dried mango for fruit salad, Kerabu Mangga.‏ Asian Journal of Agriculture and Biology. 7(1), 103-115.
Och, A., & Nowak, R. (2021). Barberry (Berberis vulgaris)-Traditional and Contemporary Use. In Medicinal Plants: Domestication, Biotechnology and Regional Importance (pp. 797-825). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-74779-4_24
Padmavathi, A. R., P, S. M., Das, A., Priya, A., Sushmitha, T. J., Pandian, S. K., & Toleti, S. R. (2020). Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling, 36(1), 56-72.‏ http://dx.doi.org/10.1080/08927014.2020.1715371
Pérez-Lamela, C., Franco, I., & Falqué, E. (2021). Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: A review. Molecules, 26(17), 5265.‏ http://dx.doi.org/10.3390/molecules26175265
Pokhrel, P. R., Boulet, C., Yildiz, S., Sablani, S., Tang, J., & Barbosa-Cánovas, G. V. (2022). Effect of high hydrostatic pressure on microbial inactivation and quality changes in carrot-orange juice blends at varying pH. LWT, 159, 113219. https://doi.org/10.1016/j.lwt.2022.113219
Quansah, J. K., Gazula, H., Holland, R., Scherm, H., Li, C., Takeda, F., & Chen, J. (2019). Microbial quality of blueberries for the fresh market. Food Control, 100, 92-96. http://dx.doi.org/10.1016/j.foodcont.2018.12.034
Ragaert, P., Devlieghere, F., Devuyst, E., Dewulf, J., Van Langenhove, H., & Debevere, J. (2006). Volatile metabolite production of spoilage micro-organisms on a mixed-lettuce agar during storage at 7 C in air and low oxygen atmosphere. International Journal of Food Microbiology, 112(2), 162-170. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.06.018
Rekha, C., Poornima, G., Manasa, M., Abhipsa, V., Devi, J. P., Kumar, H. T. V., & Kekuda, T. P. (2012). Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chemical Science Transactions, 1(2), 303-310.‏ http://dx.doi.org/10.7598/cst2012.182
Rowbury, R. J. (1997). Regulatory components, including integration host factor, CysB and H‐NS, that influence pH responses in Escherichia coli. Letters in Applied Microbiology, 24(5), 319-328.‏
http://dx.doi.org/10.1046/j.1472-765x.1997.00065.x
Saad, A. M., El‐Saadony, M. T., Mohamed, A. S., Ahmed, A. I., & Sitohy, M. Z. (2021). Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour‐based noodles. International Journal of Food Science & Technology, 56(7), 3255-3268.‏
http://dx.doi.org/10.1111/ijfs.14970
Saebi, M. R., Moradinezhad, F., & Ansarifar, E. (2023). Quality preservation and decay reduction of minimally processed seedless barberry fruit via postharvest ultrasonic treatment. Food Science & Nutrition, 11(12), 7816-7825. http://dx.doi.org/10.1002/fsn3.3698
Saki, M., ValizadehKaji, B., Abbasifar, A., & Shahrjerdi, I. (2019). Effect of chitosan coating combined with thymol essential oil on physicochemical and qualitative properties of fresh fig (Ficus carica L.) fruit during cold storage. Journal of Food Measurement and Characterization, 13, 1147-1158.‏ http://dx.doi.org/10.1007/s11694-019-00030-w
Sansavini, S., & Lugli, S. (2005, June). Sweet cherry breeding programs in Europe and Asia. In V International Cherry Symposium 795 (pp. 41-58).‏http://dx.doi.org/10.17660/actahortic.2008.795.1
Serdyuk, M., Ivanova, I., Malkina, V., Kryvonos, I., Тymoshchuk, Т., & Ievstafiieva, K. (2020). The formation of dry soluble substances in sweet cherry fruits under the influence of abiotic factors. Scientific Horizons, 3(88), 127-135.‏ http://dx.doi.org/10.33249/2663-2144-2020-88-3-127-135
Sheiko, T., Tkachenko, S., Mushtruk, M., Vasyliv, V., Deviatko, O., Mukoid, R., & Bondar, N. (2019). Studying the processing of food dye from beet juice. Potravinarstvo Slovak Journal of Food Sciences, 13(1)‏, 688-694. http://dx.doi.org/10.5219/1152
Shidfar, F., Ebrahimi, S. S., Hosseini, S., Heydari, I., Shidfar, S., & Hajhassani, G. (2012). The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iranian journal of pharmaceutical research: IJPR, 11(2), 643-652
Silva, F. V. (2019). Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends in Food Science & Technology, 88, 143-156.‏ http://dx.doi.org/10.1016/j.tifs.2019.03.016
Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in nutrition, 3(4), 506-516.‏ http://dx.doi.org/10.3945/an.112.002154
Smith, J. L., Fratamico, P. M., & Gunther IV, N. W. (2014). Shiga toxin-producing Escherichia coli. Advances in Applied Microbiology, 86, 145-197.‏ http://dx.doi.org/10.1016/b978-0-12-800262-9.00003-2
Stratford, M., Steels, H., Novodvorska, M., Archer, D. B., & Avery, S. V. (2019). Extreme osmotolerance and halotolerance in food-relevant yeasts and the role of glycerol-dependent cell individuality. Frontiers in Microbiology, 9, 3238.‏ http://dx.doi.org/10.3389/fmicb.2018.03238
Suriati, L., Utama, I., Harjosuwono, B. A., & Gunam, I. B. W. (2020). Physicochemical characteristics of fresh-cut tropical fruit during storage. International journal on advance science Engineering Information Technology,‏ 10(4), 1731-1736. http://dx.doi.org/10.18517/ijaseit.10.4.10857
Suriyaprom, S., Mosoni, P., Leroy, S., Kaewkod, T., Desvaux, M., & Tragoolpua, Y. (2022). Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants, 11(3), 602.‏ http://dx.doi.org/10.3390/antiox11030602
Talebzadeh, S. L., Fatemi, H., Azizi, M., Kaveh, M., Salavati Nik, A., Szymanek, M., & Kulig, R. (2022). Interaction of different drying methods and storage on appearance, surface structure, energy, and quality of Berberis vulgaris var. asperma. Foods, 11(19), 3003. http://dx.doi.org/10.3390/foods11193003
Tango, C. N., Wei, S., Khan, I., Hussain, M. S., Kounkeu, P. F. N., Park, J. H., & Oh, D. H. (2018). Microbiological quality and safety of fresh fruits and vegetables at retail levels in Korea. Journal of Food Science, 83(2), 386-392. http://dx.doi.org/10.1111/1750-3841.13992
Tarahovsky, Y. S., Kim, Y. A., Yagolnik, E. A., & Muzafarov, E. N. (2014). Flavonoid–membrane interactions: Involvement of flavonoid–metal complexes in raft signaling. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(5), 1235-1246. http://dx.doi.org/10.1016/j.bbamem.2014.01.021
Ukwo, S. P., Ezeama, C. F., & Ndaeyo, N. U. (2010). Growth of different yeast strains during fermentation of soursop (Annona muricata) juice as influenced by acetic acid bacteria (Acetobacter aceti). Nature and Science, 8(10), 285-291.‏
Victor, N., Peter, C., Raphael, K., Tendekayi, G. H., Jephris, G., Taole, M., & Portia, P. R. (2017). Microbiological quality of selected dried fruits and vegetables in Maseru, Lesotho. African Journal of Microbiology Research, 11(5), 185-193.‏ http://dx.doi.org/10.5897/ajmr2016.8130
Vwioko, D. E., Osemwegie, O. O., & Akawe, J. N. (2013). The effect of garlic and ginger phytogenics on the shelf life and microbial contents of homemade soursop (Annona muricata L) fruit juice. Biokemistri, 25(2), 31-38.‏
Wang, S. Y., & Camp, M. J. (2000). Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae, 85(3), 183-199. http://dx.doi.org/10.1016/s0304-4238(99)00143-0
Wang, S. Y., & Jiao, H. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry, 48(11), 5677-5684.‏ http://dx.doi.org/10.1021/jf000766i
WHO (World Health Organization). (2008). E. coli. 7 February 2018. https://www.who.int/news-room/fact-sheets/detail/e-coli.
Wiggins, P. M. (1975). Cellular functions of a cell in a metastable equilibrium state. Journal of Theoretical Biology, 52(1), 99-111. ‏‏http://dx.doi.org/10.1016/0022-5193(75)90042-9
Yang, C. S., Ho, C. T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: Differing meanings in food science and health science. Journal of Agricultural and Food Chemistry, 66(12), 3063-3068.‏ http://dx.doi.org/10.1021/acs.jafc.7b05830
Zhao, T., Ji, P., & Kumar, G. D. (2021). Pre-harvest treatment for reduction of foodborne pathogens and microbial load on tomatoes. Food Control, 119, 107469.‏ http://dx.doi.org/10.1016/j.foodcont.2020.107469  
Zitouni, H., Hssaini, L., Ouaabou, R., Viuda-Martos, M., Hernández, F., Ercisli, S., ... & Hanine, H. (2020). Exploring antioxidant activity, organic acid, and phenolic composition in strawberry tree fruits (Arbutus unedo L.) growing in Morocco. Plants, 9(12), 1677. https://doi.org/10.3390/plants9121677