Document Type : Original Article

Authors

1 Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, Mexico.

2 Research Center for Food and Development, Cuauhtémoc, Chihuahua, Mexico.

3 Faculty of Nursing and Nutrition, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico.

Abstract

Purpose: Tocopherols (vitamin E) are important bioactive components in some fruits, possessing potent antioxidant activity and exerting a significant influence on metabolic pathways, human nutrition, and health. However, the content of tocopherols in apple fruit peels and pulp has scarcely been investigated. Research method: Fruits of eight apple cultivars were evaluated for color, total soluble solids (TSS), and tocopherols from both the pulp and peels were extracted and analyzed. Findings: The content of a-tocopherol (0.073–0.656 and 0.01–0.02 mg/100 g fresh weight (FW) in the peel and pulp, respectively) was higher than that d-tocopherol (0.002–0.01 and 0.0001–0.0014 mg 100 g FW in the peel and pulp, respectively), and both tocopherols were higher in the peels than in the pulp. The content of a-tocopherol followed the order: ‘Braeburn’ > ‘Golden Delicious’ > ‘Rome’ > ‘Red Delicious’ and ‘Royal Gala’ > ‘Jonagold’ > ‘Fuji’ > ‘Granny Smith’. Low levels of d-tocopherol were detected in the peels. ‘Granny Smith’ apples had the highest d-tocopherol content in the peel (0.01 mg 100 g FW), whereas ‘Rome Beauty’, ‘Royal Gala’ and ‘Fuji’ apples exhibited the lowest levels (0.002 mg 100 g FW).  Research limitations: There were no limitations identified. Originality/Value: Our results indicate that tocopherols content in apple peels and pulp is relatively low compared to other types of fruits rich in vitamin E. However, regular consumption of whole apples may contribute to daily vitamin E intake and help prevent the oxidation of lipophilic biomolecules.

Keywords

Main Subjects

Akšić, M. F, Lazarević, K., Šegan, S., Natić, M., Tosti, T., Ćirić, I., & Meland, M. (2021). Assessing the fatty acid, carotenoid, and tocopherol compositions of seeds from apple cultivars (Malus domestica Borkh.) grown in Norway. Foods, 10(8), 1956. https://doi.org/10.3390/foods10081956
Bianchi, F., Soini, E., Ciesa, F., Bortolotti, L., Guerra, W., Robatscher, P., & Oberhuber, M. (2020). L-ascorbic acid and α-tocopherol content in apple pulp: A comparison between 24 cultivars and annual variations during three harvest seasons. International Journal of Food Properties, 23(1),1624-1638. https://doi.org/10.1080/10942912.2020.1820515
Blaner, W. S., Shmarakov, I. O., & Traber, M. G. (2021). Vitamin A and vitamin E: will the real antioxidant please stand up?. Annual Review of Nutrition, 41(1),105-131. https://doi.org/10.1146/annurev-nutr-082018-124228
Bohn, T., & Bouayed, J. (2020). Apples: an apple a day, still keeping the doctor away?'. In A. K. Jaiswal (Ed.), Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, (pp. 595-612). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00037-4
Bruno, R. S., Leonard, S. W., Park, S. I., Zhao, Y., & Traber, M.G. (2006). Human vitamin E requirements assessed with the use of apples fortified with deuterium-labeled α-tocopheryl acetate. The American Journal of Clinical Nutrition, 83(2), 299-304. https://doi.org/10.1093/ajcn/83.2.299
Drogoudi, P. D., Michailidis, Z., & Pantelidis, G. (2008) Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Scientia Horticulturae, 115(2),149-153. https://doi.org/10.1016/j.scienta.2007.08.010
EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens. (2024). Scientific opinion on the tolerable upper intake level for vitamin E. EFSA Journal, 22, e8953. https://doi.org/10.2903/j.efsa.2024.8953
Falk, J., & Munné-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond. Journal of Experimental Botany, 61(6), 1549-1566. https://doi.org/10.1093/jxb/erq030
FAOSTAT. (2022). Data on Crops and livestock products. Apple production. https://www.fao.org/faostat/en/#data/QCL. Accessed, August 15, 2024.
Fernández-Cancelo, P., Iglesias-Sanchez, A., Torres-Montilla, S., Ribas-Agustí, A., Teixidó, N., Rodriguez-Concepcion, M., & Giné-Bordonaba, J. (2022). Environmentally driven transcriptomic and metabolic changes leading to color differences in “Golden Reinders” apples. Frontiers in Plant Science, 13, 913433. https://doi.org/10.3389/fpls.2022.913433
Górnaś, P., Lācis, G., Mišina, I., & Ikase, L. (2023). Tocopherols in cultivated apple Malus sp. seeds: composition, variability and specificity. Plants, 12(5), 1169. https://doi.org/ 10.3390/plants12051169 
Górnaś, P., Symoniuk, E., & Soliven, A. (2024). Reversed phase HPLC with UHPLC benefits for the determination of tocochromanols in the seeds of edible fruits in the Rosaceae family. Food Chemistry, 460, 140789. https://doi.org/10.1016/j.foodchem.2024.140789
Gwanpua, S. G., Vicent, V., Verlinden, B. E., Hertog, M. L. A. T. M., Nicolai, B. M., & Geeraerd A. H. (2014). Managing biological variation in skin background colour along the postharvest chain of ‘Jonagold’ apples. Postharvest Biology and Technology, 93, 61-71. https://doi.org/10.1016/j.postharvbio.2014.02.008
Hodgson, J. M., Prince, R. L., Woodman, R. J., Bondonno, C. P., Ivey, K. L., Bondono, N., Rimm, E. B., Ward, N. C., Croft, K. D., & Lewis, J. R. (2016). Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. British Journal of Nutrition, 115(5), 860-867. https://doi.org/10.1017/S0007114515005231
Hoehn, E., Gasser, F., Guggenbühl, B., & Künsch, U. (2003). Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biology and Technology, 27(1), 27-37. https://doi.org/10.1016/S0925-5214(02)00190-4
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. US: National Academy Press. pp. 531.
Kumar, P., Sethi, S., Sharma, R. R., Singh, S., Saha, S., Sharma, V. K., Verma, M. K., & Sharma, S. K. (2018). Nutritional characterization of apple as a function of genotype. Journal of Food Science and Technology, 55, 2729-2738. https://doi.org/10.1007/s13197-018-3195-x
Pedrielli, P., & Skibsted, L. H. (2002) Antioxidant synergy and regeneration effect of quercetin, (−)-epicatechin, and (+)-catechin on α-tocopherol in homogeneous solutions of peroxidating methyl linoleate. Journal of Agricultural and Food Chemistry, 50(24), 7138-7144. https://doi.org/10.1021/jf020437l
Piagentini, A.M., & Pirovani, M. E. (2017) Total phenolics content, antioxidant capacity, physicochemical attributes, and browning susceptibility of different apple cultivars for minimal processing. International Journal of Fruit Science, 17(1), 102-116. https://doi.org/10.1080/15538362.2016.1262304
SADER, (2023), Secretaría de Agricultura y Desarrollo Rural. Todo sobre la manzana. https://www.gob.mx/agricultura/es/articulos/todo-sobre-la-manzana. Accessed, August 24.
Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F., & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. Journal of Plant Growth Regulation, 38, 1325-1340. https://doi.org/10.1007/s00344-019-09936
Trombino, S., Serini, S., Di Nicuolo, F., Celleno, L., Andò, S., Picci, N., Calviello, G., & Palozza, P. (2004). Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with α-tocopherol, β-carotene, and ascorbic acid. Journal of Agricultural and Food Chemistry, 52(8), 2411-2420. https://doi.org/10.1021/jf0303924
Yang, C. S., Luo, P., Zeng, Z., Wang, H., Malafa, M., & Suh, N. (2020). Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Molecular Carcinogenesis, 59(4), 365-389. https://doi.org/10.1002/mc.23160