Akšić, M. F, Lazarević, K., Šegan, S., Natić, M., Tosti, T., Ćirić, I., & Meland, M. (2021). Assessing the fatty acid, carotenoid, and tocopherol compositions of seeds from apple cultivars (
Malus domestica Borkh.) grown in Norway.
Foods, 10(8), 1956.
https://doi.org/10.3390/foods10081956
Bianchi, F., Soini, E., Ciesa, F., Bortolotti, L., Guerra, W., Robatscher, P., & Oberhuber, M. (2020). L-ascorbic acid and α-tocopherol content in apple pulp: A comparison between 24 cultivars and annual variations during three harvest seasons.
International Journal of Food Properties,
23(1),1624-1638.
https://doi.org/10.1080/10942912.2020.1820515
Bohn, T., & Bouayed, J. (2020). Apples: an apple a day, still keeping the doctor away?'. In A. K. Jaiswal (Ed.),
Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, (pp. 595-612). Academic Press.
https://doi.org/10.1016/B978-0-12-812780-3.00037-4
Bruno, R. S., Leonard, S. W., Park, S. I., Zhao, Y., & Traber, M.G. (2006). Human vitamin E requirements assessed with the use of apples fortified with deuterium-labeled α-tocopheryl acetate.
The American Journal of Clinical Nutrition, 83(2), 299-304.
https://doi.org/10.1093/ajcn/83.2.299
Drogoudi, P. D., Michailidis, Z., & Pantelidis, G. (2008) Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars.
Scientia Horticulturae,
115(2),149-153.
https://doi.org/10.1016/j.scienta.2007.08.010
EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens. (2024). Scientific opinion on the tolerable upper intake level for vitamin E.
EFSA Journal,
22, e8953.
https://doi.org/10.2903/j.efsa.2024.8953
Falk, J., & Munné-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond.
Journal of Experimental Botany,
61(6), 1549-1566.
https://doi.org/10.1093/jxb/erq030
Fernández-Cancelo, P., Iglesias-Sanchez, A., Torres-Montilla, S., Ribas-Agustí, A., Teixidó, N., Rodriguez-Concepcion, M., & Giné-Bordonaba, J. (2022). Environmentally driven transcriptomic and metabolic changes leading to color differences in “Golden Reinders” apples.
Frontiers in Plant Science,
13, 913433.
https://doi.org/10.3389/fpls.2022.913433
Górnaś, P., Lācis, G., Mišina, I., & Ikase, L. (2023). Tocopherols in cultivated apple Malus sp. seeds: composition, variability and specificity. Plants, 12(5), 1169. https://doi.org/ 10.3390/plants12051169
Górnaś, P., Symoniuk, E., & Soliven, A. (2024). Reversed phase HPLC with UHPLC benefits for the determination of tocochromanols in the seeds of edible fruits in the Rosaceae family.
Food Chemistry,
460, 140789.
https://doi.org/10.1016/j.foodchem.2024.140789
Gwanpua, S. G., Vicent, V., Verlinden, B. E., Hertog, M. L. A. T. M., Nicolai, B. M., & Geeraerd A. H. (2014). Managing biological variation in skin background colour along the postharvest chain of ‘Jonagold’ apples.
Postharvest Biology and Technology,
93, 61-71.
https://doi.org/10.1016/j.postharvbio.2014.02.008
Hodgson, J. M., Prince, R. L., Woodman, R. J., Bondonno, C. P., Ivey, K. L., Bondono, N., Rimm, E. B., Ward, N. C., Croft, K. D., & Lewis, J. R. (2016). Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women.
British Journal of Nutrition, 115(5), 860-867.
https://doi.org/10.1017/S0007114515005231
Hoehn, E., Gasser, F., Guggenbühl, B., & Künsch, U. (2003). Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations.
Postharvest Biology and Technology,
27(1),
27-37.
https://doi.org/10.1016/S0925-5214(02)00190-4
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. US: National Academy Press. pp. 531.
Kumar, P., Sethi, S., Sharma, R. R., Singh, S., Saha, S., Sharma, V. K., Verma, M. K., & Sharma, S. K. (2018). Nutritional characterization of apple as a function of genotype.
Journal of Food Science and Technology,
55, 2729-2738.
https://doi.org/10.1007/s13197-018-3195-x
Pedrielli, P., & Skibsted, L. H. (2002) Antioxidant synergy and regeneration effect of quercetin, (−)-epicatechin, and (+)-catechin on α-tocopherol in homogeneous solutions of peroxidating methyl linoleate.
Journal of Agricultural and Food Chemistry,
50(24), 7138-7144.
https://doi.org/10.1021/jf020437l
Piagentini, A.M., & Pirovani, M. E. (2017) Total phenolics content, antioxidant capacity, physicochemical attributes, and browning susceptibility of different apple cultivars for minimal processing.
International Journal of Fruit Science,
17(1),
102-116.
https://doi.org/10.1080/15538362.2016.1262304
Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F., & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions.
Journal of Plant Growth Regulation, 38, 1325-1340.
https://doi.org/10.1007/s00344-019-09936
Trombino, S., Serini, S., Di Nicuolo, F., Celleno, L., Andò, S., Picci, N., Calviello, G., & Palozza, P. (2004). Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with α-tocopherol, β-carotene, and ascorbic acid.
Journal of Agricultural and Food Chemistry,
52(8), 2411-2420.
https://doi.org/10.1021/jf0303924
Yang, C. S., Luo, P., Zeng, Z., Wang, H., Malafa, M., & Suh, N. (2020). Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols.
Molecular Carcinogenesis,
59(4),
365-389.
https://doi.org/10.1002/mc.23160