Document Type : Review Article

Authors

1 College of Horticulture, Hebei Agricultural University, Baoding, 071001, China

2 Institute of Horticultural Science, University of Agriculture Faisalabad, 38040, Pakistan

Abstract

Purpose: Fruit species are essential for nutritional and health security, rich in micronutrients, antioxidants, and bioactive compounds. Recognized as functional foods, they meet current and future dietary requirements. Traditional breeding techniques have successfully enhanced various traits, including quality, aroma, antioxidant content, yield, and nutritional value. However, challenges such as climate change and the need for enhanced stress resistance require innovative solutions. Findings: Biotechnology has significantly expanded the potential for the large-scale propagation of elite clones through advancements in tissue culture, mutagenesis, and genetic transformation. Cutting-edge tools, such as CRISPR-Cas9, RNA interference (RNAi), genome-wide association studies (GWAS), and smart sensors, have revolutionised the development of novel germplasms with enhanced agronomic and nutritional traits. These technologies enable precise genetic modifications in the fruit species, boosting nutritional quality and stress tolerance. Metabolic pathway engineering allows for targeted manipulation of biochemical pathways to increase bioactive compounds, such as antioxidants and vitamins. Additionally, these innovations enhance resilience to environmental stressors such as drought, salinity, and temperature extremes, ensuring stable yields. Limitations: Despite significant progress, fully harnessing the potential of biotechnological tools to improve fruit quality and nutrition remains a work in progress. Challenges, such as limited genetic resources, regulatory barriers, high costs, and variable consumer acceptance, continue to limit their widespread application. Directions for future research: Creation of novel fruit products through biotechnology underscores the potential for trait-based enhancements, thereby opening new avenues for the development of genetically superior fruit cultivars. This review highlights the extensive applications of biotechnological approaches for improving fruit quality and nutritional value, and addressing the dynamic challenges in fruit crop enhancement.

Keywords

Main Subjects

Abdallah, N. A. (2025). Breeding plants resilient to climate change. In climate changes impacts on aquatic environment: assessment, adaptation, mitigation, and road map for sustainable development. Cham: Springer Nature Switzerland, (pp. 183-202).
Adaskaveg, J. A., & Blanco-Ulate, B. (2023). Targeting ripening regulators to develop fruit with high quality and extended shelf life. Current Opinion in Biotechnology, 79, 102872. https://doi.org/10.1016/j.copbio.2022.102872
Ahmar, S., Gill, R. A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences, 21(7), 2590. https://doi.org/10.3390/ijms21072590
Ahmed, M., Babayola, M., & Bake, I. D. (2024). Role of horticultural crops in food and nutritional security: A Review. Journal of Nutrition and Food Processing, 7(8).
Ali, S., Hameed, A., Muhae-Ud-Din, G., Ikhlaq, M., Ashfaq, M., Atiq, M., & Wang, Y. (2023). Citrus canker: a persistent threat to the worldwide citrus industry-An analysis. Agronomy, 13(4), 1112. https://doi.org/10.3390/agronomy13041112 
Allan, A., & Espley, R. (2018). MYBs Drive Novel Consumer Traits in Fruits and Vegetables. Trends in Plant Science. 23, 693–705. https://doi.org/10.1016/j.tplants.2018.06.00
Alvarez, D., Cerda-Bennasser, P., Stowe, E., Ramirez-Torres, F., Capell, T., Dhingra, A., & Christou, P. (2021). Fruit crops in the era of genome editing: closing the regulatory gap. Plant Cell Reports40, 915-930. https://doi.org/10.1007/s00299-021-02664-x
Antwi-Boasiako, A., Amponsah, P., Opoku, J. A., Coulibaly, D., & Mintah, P. (2024). Increasing mango production efficiency under the fast-changing climate. In Abiotic Stress in Crop Plants-Ecophysiological Responses and Molecular Approaches. IntechOpen. https://doi.org/10.5772/intechopen.112951 
Bashir, T., Ul Haq, S. A., Masoom, S., Ibdah, M., & Husaini, A. M. (2023). Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Molecular Biology Reports50(10), 8729-8742. https://doi.org/10.1007/s11033-023-08728-3
Bhattacharyya, N., Anand, U., Kumar, R., Ghorai, M., Aftab, T., Jha, N. K., Rajapaksha, A. U., Bundschuh, J., Bontempi, E., & Dey, A. (2022). Phytoremediation and sequestration of soil metals using the CRISPR/Cas9 technology to modify plants: A review. Environmental Chemistry Letters, 21(1), 429–445. https://doi.org/10.1007/s10311-022-01474-1
Biswas, P., Anand, U., Ghorai, M., Pandey, D. K., Jha, N. K., Behl, T., Kumar, M., Chauhan, R., Shekhawat, M. S., & Dey, A. (2022). Unravelling the promise and limitations of CRISPR/Cas system in natural product research: Approaches and challenges. Biotechnology Journal, 17(7), 2100507. https://doi.org/10.1002/biot.202100507
Brookes, G. (2022). Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020. GM Crops & Food, 13(1), 171-195. https://doi.org/10.1080/21645698.2022.2105626
Brummell, D. A., Bowen, J. K., & Gapper, N. E. (2022). Biotechnological approaches for controlling postharvest fruit softening. Current Opinion in Biotechnology, 78, 102786. https://doi.org/10.1016/j.copbio.2022.102786
Campa, M., Miranda, S., Licciardello, C., Lashbrooke, J. G., Dalla Costa, L., Guan, Q., & Malnoy, M. (2024). Application of new breeding techniques in fruit trees. Plant Physiology194(3), 1304-1322. https://doi.org/10.1093/plphys/kiad374
Canani, A., Spitzer-Rimon, B., Ravid, J., Farhi, M., Masci, T., Aravena-Calvo, J., Ovadis, M., Vainstein, A. (2015). Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers. New Phytologist, 208, 708–714. https://doi.org/10.1111/nph.13534 
Chauhan, S., Sharma, A., Verma, P., & Singh, N. P. (2025). Unlocking genetic potential in fruit crops with CRISPR/Cas technology. Applied Fruit Science67(1), 1-9. https://doi.org/10.1007/s10341-024-01224-3
Dai, Z., Guan, J., Miao, H., Beckles, D. M., Liu, X., Gu, X., & Zhang, S. An intronic SNP in the Carotenoid Cleavage Dioxygenase 1 (CsCCD1) controls yellow flesh formation in cucumber fruit (Cucumis sativus L.). Plant Biotechnology Journal. https://doi.org/10.1111/pbi.70034
Dambier, D., Barantin, P., Boulard, G., Costantino, G., Mournet, P., Perdereau, A., & Ollitrault, P. (2022). Genomic instability in somatic hybridization between poncirus and citrus species aiming to create new rootstocks. Agriculture, 12(2), 134. https://doi.org/10.3390/agriculture12020134
Davuluri, G. R., Van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., & Bowler, C. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature biotechnology23(7), 890-895. https://doi.org/10.1038/nbt1108
de Lima, L. F. F., Carvalho, I. G. B., de Souza-Neto, R. R., Dos Santos, L. D. S., Nascimento, C. A., Takita, M. A., & de Souza, A. A. (2024). Antisense oligonucleotide as a new technology application for CSLOB1 gene silencing aiming at citrus canker resistance. Phytopathology, 114(8), 1802-1809. https://doi.org/10.1094/PHYTO-02-24-0058-KC
Dhiman, V. K., Singh, D., Dhiman, V. K., & Pandey, H. (2024). Multi‐omics: An Advanced Bioinformatics approach for crop improvement in agriculture. Bioinformatics for Plant Research and Crop Breeding, 75-98. https://doi.org/10.1002/9781394209965.ch3
Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., & Friedman, H. (2016). Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology, 171(1), 380-391. https://doi.org/10.1104/pp.15.01866
Espley, R. V., Butts, C. A., Laing, W. A., Martell, S., Smith, H., McGhie, T. K., & Hellens, R. P. (2014). Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. The Journal of Nutrition, 144(2), 146-154. https://doi.org/10.3945/jn.113.182659
Farooq, U., Shafi, A., Akram, K., & Hayat, Z. (2020). Fruits and nutritional security. In Fruit Crops (pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00001-0
Fatima, K., Sadaqat, M., Azeem, F., & ul Qamar, M. T. (2023). Role of integrative omics and bioinformatics approaches in berries research and genetic improvement. In berry bioactive compound by-products (pp. 159-192). Academic Press. https://doi.org/10.1016/B978-0-323-95600-0.00005-5
Fiol, A., Jurado-Ruiz, F., López Girona, E., & Aranzana, M. J. (2022). An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster. Plant Methods, 18(1), 105. https://doi.org/10.1186/s13007-022-00937-4
Firoozbady, E., & Young, T. R. (2015). U.S. Patent Application No. 13/507,101. https://patents.google.com/patent/USPP25763P3/en
Gapper, N. E., Giovannoni, J. J., & Watkins, C. B. (2014). Understanding development and ripening of fruit crops in an ‘omics’ era. Horticulture Research, 1. https://doi.org/10.1038/hortres. 2014.34
Gouthu, S., Mandelli, C., Eubanks, B. A., & Deluc, L. G. (2022). Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. Frontiers in Plant Science, 13, 979742. https://doi.org/10.3389/fpls.2022.979742
Grosser, J. W., Calovic, M., & Louzada, E. S. (2010). Protoplast fusion technology somatic hybridization and cybridization. Plant Cell Culture, 175-198.
Gu, C., Pei, M. S., Guo, Z. H., Wu, L., Qi, K. J., Wang, X. P., & Zhang, S. (2024). Multi-omics provide insights into the regulation of DNA methylation in pear fruit metabolism. Genome Biology, 25(1), 70. https://doi.org/10.1186/s13059-024-03200-2
Guo, S., Zhao, S., Sun, H., Wang, X., Wu, S., Lin, T., & Xu, Y. (2019). Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 51(11), 1616-1623. https://doi.org/10.1038/s41588-019-0518-4
Guo, Y., Zhao, G., Gao, X., Zhang, L., Zhang, Y., Cai, X., & Guo, X. (2023). CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. Planta, 258(2), 36. https://doi.org/10.1007/s00425-023-04187-z
Habibi, F., Boakye, D. A., Chang, Y., Casorzo, G., Hallman, L. M., Madison, M., & Liu, T. (2024). Molecular mechanisms underlying postharvest physiology and metabolism of fruit and vegetables through multi-omics technologies. Scientia Horticulturae324, 112562. https://doi.org/10.1016/j.scienta.2023.112562
Hao, G., Stover, E., & Gupta, G. (2016). Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Frontiers in Plant Science, 7, 1078. https://doi.org/10.3389/fpls.2016.01078
Hermawaty, D., Ubaidullah, Putri, M. A., Prabhandiya, S., Dwivany, F. M., & Meitha, K. (2025). Epigenetic regulation of banana fruit ripening: global and specific DNA methylation profile, and characterization of DNA methylation-related genes. Cogent Food & Agriculture, 11(1), 2448267. https://doi.org/10.1080/23311932.2024.2448267
Hou, Q., & Wan, X. (2021). Epigenome and epitranscriptome: potential resources for crop improvement. International Journal of Molecular Sciences, 22(23), 12912. https://doi.org/10.3390/ijms222312912
Hu, G., Feng, J., Xiang, X., Wang, J., Salojarvi, J., Liu, C., & Li, J. (2022a). Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 54(1), 73-83. https://doi.org/10.1038/s41588-021 00971-3
Hu, H., Scheben, A., Verpaalen, B., Tirnaz, S., Bayer, P. E., Hodel, R. G., & Edwards, D. (2022b). Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. New Phytologist, 233(4), 1548-1555. https://doi.org/10.1111/nph.17658
Hu, L., Xu, T., Cai, Y., Qin, Y., Zheng, Q., Chen, T., & Yang, Z. (2025). Identifying candidate genes for grape (Vitis vinifera L.) fruit firmness through genome-wide association studies. Journal of Agricultural and Food Chemistry, 73(14), 8413-8425. https://pubs.acs.org/doi/10.1021/acs.jafc.5c00085.
Hunter, W. B., Glick, E., Paldi, N., & Bextine, B. R. (2012). Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest Entomology, 37(1), 85-87.http://dx.doi.org/10.3958/059.037.0110
Ijaz, S., Iqbal, J., Abbasi, B. A., Yaseen, T., Rehman, S., Kazi, M., & Mahmood, T. (2024). Role of OMICS‐based technologies in plant sciences. OMICsbased techniques for global food security, 45-66. https://doi.org/10.1002/9781394209156.ch3
Irfan, M., Kumar, P., Ahmad, M. F., & Siddiqui, M. W. (2023). Biotechnological interventions in reducing losses of tropical fruits and vegetables. Current Opinion in Biotechnology79, 102850. https://doi.org/10.1016/j.copbio.2022.102850
James, C. (2016). Global status of commercialized biotech/gm crops: 2016. ISAAA Brief No. 47. ISAAA: Ithaca, NY.
Jia, D., Gao, H., He, Y., Liao, G., Lin, L., Huang, C., & Xu, X. (2023). Kiwifruit monodehydroascorbate reductase 3 gene negatively regulate the accumulation of ascorbic acid in fruit of transgenic tomato plants. International Journal of Molecular Sciences24(24), 17182. https://doi.org/10.3390/ijms242417182
Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F. F., Jones, J. B., & Wang, N. (2017). Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7), 817-823. https://doi.org/10.1111/pbi.12677
Jiang, X., Zhan, J., Wang, Q., Wu, X., Chen, X., Jia, B., & Heng, W. (2020). Overexpression of the pear PbSPMS gene in Arabidopsis thaliana increases resistance to abiotic stress. Plant Cell, Tissue and Organ Culture (PCTOC), 140, 389-401. https://doi.org/10.1007/s11240-019-01735-y
Jin, R., Kim, B. H., Ji, C. Y., Kim, H. S., Li, H. M., & Kwak, S. S. (2017). Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweet potato. Plant Physiology and Biochemistry, 118, 45-54. https://doi.org/10.1016/j.plaphy. 2017.06.002
Jin, S. B., Kim, M. J., Choi, C., & Yun, S. H. (2022). Induction and genetic verification of haploid-derived plants using anther culture of Citrus Aurantium L. (Sour orange). https://doi.org/10.21203/rs.3.rs-1426925/v1
Jin, S., Fei, H., Zhu, Z., Luo, Y., Liu, J., Gao, S., & Gao, C. (2020). Rationally designed APOBEC3B cytosine base editors with improved specificity. Molecular Cell, 79(5), 728-740. https://doi.org/10.1016/j.molcel.2020.07.005
Jung, Y. J., Lee, G. J., Bae, S., and Kang, K. K. (2018). Reduced ethylene production in tomato fruits upon CRSPR/Cas9-mediated LeMADS-RIN mutagenesis. Horticulture Science Technology, 36(3), 396–405. https://doi.org/10.12972/kjhst.2018003
Kaur, H., & Talekar, N. (2024). The Function of RNA interference (RNAi) in crop enhancement-mechanism and applications: a review. Journal of Experimental Agriculture International, 46(6), 351-370. https://doi.org/10.9734/jeai/2024/v46i62487
Keul, A. B., Farkas, A., Carpa, R., Dobrota, C., & Iordache, D. (2022). Development of smart fruit crops by genome editing. Turkish Journal of Agriculture and Forestry, 46(2), 129-140. https://doi.org/10.55730/1300-011X.2965
Keykha Akhar, F., Bagheri, A., Moshtaghi, N., & Fakhrfeshani, M. (2023). The effect of Chalcone isomerase gene silencing on pigment production pathway in Petunia hybrida with RNAi technology. Journal of Horticultural Science, 37(2), 409-421. https://doi.org/10.22067/jhs.2022.76190.1162
Khan, M. A., Zaman, F., Liu, Y. Z., Alam, S. M., Han, H., Luo, Y., & Ateeq, M. (2025). CsMYB1CwINV6 module involves in the promotion of soluble sugar accumulation in citrus fruits under drought stress. Plant, Cell & Environment, 48(7), 5572-5583. https://doi.org/10.1111/pce.15539
Kim, H., Kim, S. T., Ryu, J., Kang, B. C., Kim, J. S., & Kim, S. G. (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications8(1), 14406. https://doi.org/10.1038/ncomms14406
Klerkx, L., & Rose, D. (2020). Dealing with the game-changing technologies of agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24, 100347. https://doi.org/10.1016/j.gfs.2019.100347
Kowsalya, K., Halka, J., Girija, S., Gurusaravanan, P., & Arun, M. (2024). RNA Interference (RNAi) Mechanism and Application in Plants for Enhancement of Natural Products. In Biosynthesis of Natural Products in Plants: Bioengineering in Post-genomics Era (pp. 141-159). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2166-5_6
Kumari, C., Sharma, M., Kumar, V., Sharma, R., Kumar, V., Sharma, P., & Irfan, M. (2022). Genome editing technology for genetic amelioration of fruits and vegetables for alleviating post-harvest loss. Bioengineering, 9(4), 176. https://doi.org/10.3390/bioengineering9040176
Lastochkina, O., Aliniaeifard, S., SeifiKalhor, M., Bosacchi, M., Maslennikova, D., & Lubyanova, A. (2022). Novel approaches for sustainable horticultural crop production: advances and prospects. Horticulturae8(10), 910. https://doi.org/10.3390/horticulturae8100910
Lee, J., Jung, J. H., & Oh, S. H. (2024). Enhancing animal breeding through quality control in genomic data-a review. Journal of Animal Science and Technology66(6), 1099. https://doi.org/10.5187/jast. 2024.e92
Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., & Grierson, D. (2020). Roles of RIN and ethylene in tomato fruit ripening and ripening‐associated traits. New Phytologist226(2), 460-475. https://doi.org/10.1111/nph.16362
Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., et al. (2018a). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 36, 1160–1163. https://doi.org/10.1038/nbt.4273
Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., & Zhu, H. (2018b). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science, 9, 559. https://doi.org/10.3389/fpls.2018.00559
Liu, G., Lin, Q., Jin, S., & Gao, C. (2022). The CRISPR-Cas toolbox and gene editing technologies. Molecular cell, 82(2), 333-347. https://doi.org/10.1016/j.molcel.2021.12.002
Liu, S., Li, X., Zhu, J., Jin, Y., Xia, C., Zheng, B., & Cui, F. (2024). Modern technologies provide new opportunities for somatic hybridization in the breeding of woody plants. Plants, 13(18), 2539. https://doi.org/10.3390/plants13182539
Long, Q., Du, M., Long, J., Xie, Y., Zhang, J., Xu, L., & Zou, X. (2021). Transcription factor WRKY22 regulates canker susceptibility in sweet orange (Citrus sinensis Osbeck) by enhancing cell enlargement and CsLOB1 expression. Horticulture Research, 8(50). https://doi.org/10.1038/s41438-021-00486-2
Lopez-Casado, G., Sánchez-Raya, C., Ric-Varas, P. D., Paniagua, C., Blanco-Portales, R., Muñoz-Blanco, J., & Mercado, J. A. (2023). CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. Horticulture Research, 10(3). https://doi.org/10.1093/hr/uhad011
Lu, T. T., Wei, R. Y., Mo, W. J., Li, K. J., Yu, H. X., Wei, H. Y., & Luo, C. (2023). Overexpression of mango MiRZFP34 confers early flowering and stress tolerance in transgenic Arabidopsis. Scientia Horticulturae312, 111868. https://doi.org/10.1016/j.scienta.2023.111868
Luo, X., Li, H., Wu, Z., Yao, W., Zhao, P., Cao, D., & Cao, S. (2020). The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft‐and hard‐seeded cultivars. Plant Biotechnology Journal, 18(4), 955-968.https://doi.org/10.1111/pbi.13260
Lv, S., Yang, Y., Zhang, X., He, Y., Wang, G., Hong, N., & Wang, L. (2025). PcMYB44 regulated host resistance to Botryosphaeria dothidea through activation of lignin biosynthesis and disease-resistance gene expression in pear. International Journal of Biological Macromolecules, 306, 141255. https://doi.org/10.1016/j.ijbiomac.2025.141255
Malakondaiah, S., Julius, A., Ponnambalam, D., Gunthoti, S. S., Ashok, J., Krishana, P. S., & Rebecca, J. (2024). Gene silencing by RNA interference: a review. Genome Instability & Disease, 5(5), 225-241. https://doi.org/10.1007/s42764-024-00135-7
Mamrutha, H. M., Zeenat, W., Kapil, D., Budhagatapalli, N., Tikaniya, D., Rakesh, K., & Singh, G. P. (2024). Evidence and opportunities for developing non-transgenic genome edited crops using site-directed nuclease 1 approach. Critical Reviews in Biotechnology, 44(6), 1140-1150. https://doi.org/10.1080/07388551.2023.2270581
Martins, P. M. M., de Oliveira Andrade, M., Benedetti, C. E., & de Souza, A. A. (2020). Xanthomonas citri subsp. citri: host interaction and control strategies. Tropical Plant Pathology, 45, 213-236. https://doi.org/10.1007/s40858-020-00376-3
Mathiazhagan, M., Chidambara, B., Hunashikatti, L. R., & Ravishankar, K. V. (2021). Genomic approaches for improvement of tropical fruits: fruit quality, shelf life and nutrient content. Genes, 12(12), 1881. https://doi.org/10.3390/genes12121881
Meena, M. K. (2024). Regulating postharvest pathogen infection and decay using biotechnological tools. In Bioengineered Fruit and Vegetables (pp. 135-161). Apple Academic Press.
Meyer, R. S., & Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, 14(12), 840-852. https://doi.org/10.1038/nrg3605
Mihret, Y. C., Takele, M. M., & Mintesinot, S. M. (2025). Advancements in agriculture 4.0 and the needs for introduction and adoption in Ethiopia: A Review. Advances in Agriculture, 1, 8828400. https://doi.org/10.1155/aia/8828400
Mihrete, T. B., Workie, M. A., & Bogale, F. A. (2024). Applications of biotechnology for enhancing the shelf life of horticultural crops. Journal of Sustainable Agriculture and Environment, 3(3), e12121. https://doi.org/10.1002/sae2.12121
Ming, M., Long, H., Ye, Z., Pan, C., Chen, J., Tian, R., & Wu, J. (2022). Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Horticulture Research, 9. https://doi.org/10.1093/hr/uhac148
Miranda, S., Piazza, S., Nuzzo, F., Li, M., Lagreze, J., Mithöfer, A., & Martens, S. (2023). CRISPR/Cas9 genome‐editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. The Plant Journal, 113(1), 92-105. https://doi.org/10.1111/tpj.16036
Mishra, N., Tiwari, P. N., Sahu, V. K., & Singh, Y. (2020). Chapter-9 Genome Editing in Plants using CRISPR for Crop Improvement. Recent Trends in Molecular Biology and Biotechnology, 153.
Mitra, S., Anand, U., Ghorai, M., Kant, N., Kumar, M., Jha, N. K.,Swamy, M. K., Prockow, J., Lastra, J. M. P. D. L., & Dey, A. (2022).Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnology and Bioengineering, 120, 82–94. https://doi.org/10.1002/bit.28260
Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant physiology, 147(3), 969-977. https://doi.org/10.1104/pp.108.118232
Naim, F., Dugdale, B., Kleidon, J., Brinin, A., Shand, K., Waterhouse, P., & Dale, J. (2018). Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 27, 451-460. https://doi.org/10.1007/s11248-018-0083-0
Nakajima, I., Kawahigashi, H., Nishitani, C., Azuma, A., Haji, T., Toki, S., & Endo, M. (2023). Targeted deletion of grape retrotransposon associated with fruit skin color via CRISPR/Cas9 in Vitis labrascana ‘Shine Muscat’. PLoS One, 18(6), e0286698. https://doi.org/10.1371/journal.pone.0286698
Nguyen, T. M. V., Hertog, M. L., Van de Poel, B., Tran, D. T., & Nicolaï, B. (2023). Targeted system approach to ethylene biosynthesis and signaling of a heat tolerant tomato cultivar; the impact of growing season on fruit ripening. Frontiers in Plant Science, 14, 1195020. https://doi.org/10.3389/fpls.2023.1195020
Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J. A., Thomas, G., Kuca, K., & Tripathi, V. (2021). Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22(7), 3327. https://doi.org/10.3390/ijms22073327
Nie, H., Yang, X., Zheng, S., & Hou, L. (2024). Gene-based developments in improving quality of tomato: focus on firmness, shelf life, and pre-and post-harvest stress adaptations. Horticulturae10(6), 641. https://doi.org/10.3390/horticulturae10060641
Nonaka, S., Arai, C., Takayama, M., Matsukura, C., & Ezura, H. (2017). Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 7(1), 7057. https://doi.org/10.1038/s41598-017-06400-y
Ntui, V. O., Tripathi, J. N., & Tripathi, L. (2020). Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology, 21, 100128. https://doi.org/10.1016/j.cpb.2019.100128
Pacesa, M., Pelea, O., & Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 187(5), 1076-1100. https://doi.org/10.1016/j.cell.2024.01.042
Pal, S., Yadav, S. K., Kumar, A., Bhadani, M., & Singh, P. (2024). Exploiting biotechnological tools to boost disease resistance and crop productivity in horticulture. Plant Cell Biotechnology and Molecular Biology25(5-6), 87-109. https://doi.org/10.56557/pcbmb/2024/v25i5-68712
Patil, V., Jangra, S., & Ghosh, A. (2024). Advances in antisense oligo technology for sustainable crop protection. Critical Reviews in Plant Sciences, 43(6), 405-427. https://doi.org/10.1080/07352689.2024.2394001
Paul, J. Y., Khanna, H., Kleidon, J., Hoang, P., Geijskes, J., Daniells, J., & Dale, J. (2017). Golden bananas in the field: elevated fruit pro‐vitamin A from the expression of a single banana transgene. Plant Biotechnology Journal, 15(4), 520-532. https://doi.org/10.1111/pbi.12650
Penna, S., & Jain, S. M. (2023). Fruit crop improvement with genome editing, in vitro and transgenic approaches. Horticulturae, 9(1), 58. https://doi.org/10.3390/horticulturae9010058
Pimentel, D., & Fortes, A. M. (2020). Targeted genome editing using CRISPR-Cas9: Applications in fruit quality and stress resilience. In Advancement in Crop Improvement Techniques (pp. 199-207). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818581-0.00012-7
Puchta, H., Jiang, J., Wang, K., & Zhao, Y. (2022). Updates on gene editing and its applications. Plant Physiology188(4), 1725-1730. https://doi.org/10.1093/plphys/kiac032
Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2), 129-150. https://doi.org/10.1002/aepp.13044
Rai, A., Skarn, M. N., Elameen, A., Tengs, T., Amundsen, M. R., Bjora, O. S., & Thorstensen, T. (2024). CRISPR-Cas9 mediated deletions of FvMYB46 reduces fruit set and biosynthesis of flavonoids in Fragaria vesca. Biorxiv, 2024-08. https://doi.org/10.1101/2024.08.07.607017 
Rajam, M. V., Nandy, S., & Pandey, R. (2021). Biotechnology of red pepper. Genetically Modified Crops: Current Status, Prospects and Challenges Volume 2, 53-83. https://doi.org/10.1007/978-981-15-5932-7_3
Rathi, R., Singh, M., Yadav, A., Singh, J. P., Lateef, A., & Yadav, M. (2024, February). Agriculture 4.0 & its enabling technologies. In AIP Conference Proceedings (Vol. 2986, No. 1). AIP Publishing.
Rodrigues, M., Ordoñez-Trejo, E. J., Rasori, A., Varotto, S., Ruperti, B., & Bonghi, C. (2024). Dissecting postharvest chilling injuries in pome and stone fruit through integrated omics. Frontiers in Plant Science, 14, 1272986. https://doi.org/10.3389/fpls.2023.1272986
Rodriguez, A., Peris, J. E., Redondo, A., Shimada, T., Costell, E., Carbonell, I., & Peña, L. (2017). Impact of D-limonene synthase up-or down-regulation on sweet orange fruit and juice odor perception. Food Chemistry, 217, 139-150.https://doi.org/10.1016/j. foodchem.2016.08.076
Roychowdhury, R., Das, S. P., Gupta, A., Parihar, P., Chandrasekhar, K., Sarker, U., & Sudhakar, C. (2023). Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses. Genes, 14(6), 1281. https://doi.org/10.3390/genes14061281
Saberi, E., Mondal, M., Paredes-Montero, J. R., Nawaz, K., Brown, J. K., & Qureshi, J. A. (2024). Optimal dsRNA concentration for RNA interference in Asian citrus psyllid. Insects, 15(1), 58. https://doi.org/10.3390/insects15010058
Saini, R. K., Sen, R., Tomar, P., Kumar, A., & Kerkhi, S. A. (2020). Genetic variability, heritability and genetic advance study in bread wheat (Triticum aestivum L.). Progressive Agriculture, 20(1&2), 61-65. 10.5958/0976-4615.2020.00009.5
Sang, Y., Liu, Y., Tang, Y., Yang, W., Guo, M., & Chen, G. (2022). Transcriptome sequencing reveals mechanism of improved antioxidant capacity and maintained postharvest quality of winter jujube during cold storage after salicylic acid treatment. Postharvest Biology and Technology189, 111929. https://doi.org/10.1016/j.postharvbio.2022.111929
Sau, S., Bhattacharjee, P., Kundu, P., & Mandal, D. (2023). Banana. In Tropical and Subtropical Fruit Crops (pp. 1-62). Apple Academic Press. https://doi.org/10.1201/9781003305033
Saurabh, S., Vidyarthi, A. S., & Prasad, D. (2014). RNA interference: concept to reality in crop improvement. Planta239(3), 543-564.  https://doi.org/10.1007/s00425-013-2019-5
Sekeli, R. (2013). Development of delayed ripening papaya (Carica Papaya L.) CV. 'Eksotika' using RNA interference and antisense technologies (Doctoral dissertation, University Putra Malaysia).
Sekeli, R., Abdullah, J. O., Namasivayam, P., Muda, P., Bakar, U. K. A., Yeong, W. C., & Pillai, V. (2014). RNA interference of 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit. Molecules, 19(6), 8350-8362.https://doi.org/10.3390/molecules19068350
Sethi, S. (2024). CRISPR/Cas-mediated multiplex gene editing in tomato (Solanum lycopersicum L.). gene editing in plants: CRISPR-Cas and Its Applications, 795-815. https://doi.org/10.1007/978-981-99-8529-6_28
Shahrour, W. G., & Sadder, M. T. (2020). Applications of CRISPR/CAS9 technique on tomato (Solanum lycopersicum) plant. World Applied Sciences Journal38(3), 237-249. https://doi.org/10.5829/idosi.wasj.2020.237.249
Shi, M., Wei, Z., Zhang, P., Guan, C., Chachar, S., & Zhang, J. (2024). Epigenetic modifications and breeding applications in horticultural plants. Horticulturae, 10(2), 143. https://doi.org/10.3390/horticulturae10020143
Shipman, E. N., Yu, J., Zhou, J., Albornoz, K., & Beckles, D. M. (2021). Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Horticulture Research, 8(1). https://doi.org/10.1038/s41438-020-00428-4
Sindhura, N. R. H., Keerthana, D., Teja Sree, P., & Sai Pooja, N. (2024). RNA silencing and anti-scene RNA technology in crop improvement. In Advances in Crop Breeding (pp. 166-175). Cornous Publications LLP. https://doi.org/10.37446/edibook072024/166-175
Singh, A., Kumar, S., Thakur, A., Tandon, A., Tomar, P., & Rathore, R. (2025). RNA interference: applications in postharvest quality improvement of fruits and vegetables. In Bioengineered Fruit and Vegetables (pp. 93-114). Apple Academic Press.
Sinha, A. K., Kumari, I., Subhasmita, S., Rajak, J., & Singh, A. K. (2023). Exploitation of antisense RNA technology in horticultural crops. The Pharma Innovation Journal, 12(1), 173-179.
Sirohi, U., Kumar, M., Sharma, V. R., Teotia, S., Singh, D., Chaudhary, V., Priya, & Yadav, M. K. (2022). CRISPR/Cas9system: A potential tool for genetic improvement in floricultural crops. Molecular Biotechnology, 64, 1303–1318. https://doi.org/10.1007/s12033-022-00523-y
Song, B., Yu, J., Li, X., Li, J., Fan, J., Liu, H., & Wu, J. (2024). Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biology, 25(1), 87. https://doi.org/10.1186/s13059-024-03220-y
Su, Q., Yang, H., Li, X., Zhong, Y., Feng, Y., Li, H., & Zhao, Z. (2024). Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. Plant Physiology, 196(3), 1887-1907. https://doi.org/10.1093/plphys/kiae428
Sun, X., Li, X., Wang, Y., Xu, J., Jiang, S., & Zhang, Y. (2022). MdMKK9-mediated the regulation of anthocyanin synthesis in red-fleshed apple in response to different nitrogen signals. International Journal of Molecular Sciences, 23(14), 7755. https://doi.org/10.3390/ijms23147755
Tay, S. S., Zhang, F., & Neo, E. J. R. (2024). The use of technology in cancer rehabilitation: a systematic review. Frontiers in Oncology14, 1321493. https://doi.org/10.3389/fonc.2024.1321493
Teh, B. T., Lim, K., Yong, C. H., Ng, C. C. Y., Rao, S. R., Rajasegaran, V., & Tan, P. (2017). The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics, 49(11), 1633-1641.https://doi.org/10.1038/ng.3972
Tilahun, T., Bezie, Y., Kerisew, B., & Taye, M. (2021). The application of antisense technology for crop improvement: A review. Cogent Food & Agriculture, 7(1), 1910157. https://doi.org/10.1080/23311932.2021.1910157
Tolesa, S. F., & Gejea, Y. M. (2024). Analysis of the role of technological advancements in agriculture: A systematic literature review of evidence from Ethiopia. International Journal of Advanced Economics, 6(11), 730–746. https://doi.org/10.51594/ijae.v6i11.1739
Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., & Tripathi, L. (2019). CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology, 2(1), 46. https://doi.org/10. 1038/s42003-019-0288-7.
Uluisik, S., Chapman, N. H., Smith, R., Poole, M., Adams, G., Gillis, R. B., & Seymour, G. B. (2016). Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9), 950-952.https://doi.org/10.1038/nbt.3602
Varkonyi‐Gasic, E., Wang, T., Voogd, C., Jeon, S., Drummond, R. S., Gleave, A. P., & Allan, A. C. (2019). Mutagenesis of kiwifruit CENTRORADIALIS‐like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 17(5), 869-880. https://doi.org/10.1111/pbi.13021
Vishnevetsky, J., White, T. L., Palmateer, A. J., Flaishman, M., Cohen, Y., Elad, Y., & Perl, A. (2011). Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Research, 20, 61-72. https://doi.org/10.1007/s11248-010-9392-7
Vittani, L., Populin, F., Stuerz, S., Buehlmann, A., Khomenko, I., Biasioli, F., & Costa, F. (2023). Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’. Frontiers in Plant Science, 14, 1150046. https://doi.org/10.3389/fpls.2023.1150046
Wan, L., Wang, Z., Tang, M., Hong, D., Sun, Y., Ren, J., & Zeng, H. (2021). CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects. Horticulturae, 7(7), 193. https://doi.org/10.3390/horticulturae7070193
Wang, H., Xu, K., Li, X., Blanco-Ulate, B., Yang, Q., Yao, G., & Lin, J. (2023). A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. Horticulture Research, 10(8). https://doi.org/10.1093/hr/uhad140
Wang, R., Tavano, E. C. D. R., Lammers, M., Martinelli, A. P., Angenent, G. C., & de Maagd, R. A. (2019). Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Scientific Reports9(1), 1696. https://doi.org/10.1038/s41598-018-38170-6 
Wang, T., Zhou, H. Y., Zhu, H. L. (2019d). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research, 6, 77. https://doi.org/10.1038/s41438-019-0159-x
Wang, W., Feng, B., Xiao, J., Xia, Z., Zhou, X., Li, P., & Peng, M. (2014). Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 5(1), 5110. https://doi. org/10.1038/ncomms6110
Wei, L., Wang, W., Gao, X., Yao, S., Deng, L., & Zeng, K. (2024). Alterations in glucose metabolism and shikimate pathway affected by transient overexpression of CsPAL gene in postharvest citrus fruit. Postharvest Biology and Technology213, 112936. https://doi.org/10.1016/j.postharvbio.2024.112936
Weiss, R. M., Zanetti, F., Alberghini, B., Puttick, D., Vankosky, M. A., Monti, A., & Eynck, C. (2024). Bioclimatic analysis of potential worldwide production of spring‐type camelina [Camelina sativa (L.) Crantz] seeded in the spring. GCB Bioenergy16(2), e13126. https://doi.org/10.1111/gcbb.13126
Wong, D. W. (2018). Improving tomato Quality by antisense RNA. The ABCs of Gene Cloning, 137-142. https://doi.org/10.1007/978-3-319-77982-9_13
Xiong, J.S., Ding, J., Li, Y. Genome-Editing Technologies and Their Potential Application in Horticultural Crop Breeding. Horticulture Research. 2015, 2, 15019. https://doi.org/10.1038/hortres.2015.19
Yang, T., Ali, M., Lin, L., Li, P., He, H., Zhu, Q., & Deng, L. (2023). Recolouring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Horticulture Research, 10(1). https://doi.org/10.1093/hr/uhac214
Yang, X., Shu, L., Chen, J., Ferrag, M. A., Wu, J., Nurellari, E., & Huang, K. (2021). A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica8(2), 273-302. https://doi.org/10.1109/JAS.2020.1003536
Yang, Y., Saand, M. A., Huang, L., Abdelaal, W. B., Zhang, J., Wu, Y., & Wang, F. (2021). Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science, 12, 563953. https://doi.org/10.3389/fpls.2021.563953
Yang, Y., Zhu, G., Li, R., Yan, S., Fu, D., Zhu, B., & Zhu, H. (2017). The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato. Plant Physiology, 175(4), 1690-1702. https://doi.org/10.1104/pp.17.01265
Yang, Z., & Li, Y. (2018). Dissection of RNAi-based antiviral immunity in plants. Current Opinion in Virology, 32, 88-99. https://doi.org/10.1016/j.coviro.2018.08.003
Yi, S. N., Mao, J. X., Zhang, X. Y., Li, X. M., Zhang, Z. H., & Li, H. (2022). FveARF2 negatively regulates fruit ripening and quality in strawberry. Frontiers in Plant Science, 13, 1023739. https://doi.org/10.3389/fpls.2022.1023739
Yu, J., Tu, L., Subburaj, S., Bae, S., & Lee, G. J. (2021). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports, 40, 1037-1045. https://doi.org/10.1007/s00299-020-02593-1
Yuste-Lisbona, F. J., Fernández-Lozano, A., Pineda, B., Bretones, S., Ortíz-Atienza, A., Garcia-Sogo, B., & Lozano, R. (2020). ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences, 117(14), 8187-8195. https://doi.org/10.1073/pnas.1913688117
Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021a). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221. https://doi.org/10.1016/j.jare.2020.10.003
Zhang, L., Xu, Y., Luo, Z., Lv, L., Zhu, L., Ma, F., & Han, D. (2024b). Overexpression of a transcription factor MdWRKY126 altered soluble sugar accumulation in apple and tomato fruit. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2023.09.010
Zhang, M., Han, Y., Li, D., Xu, S., & Huang, Y. (2023). Smart horticulture as an emerging interdisciplinary field combining novel solutions: past development, current challenges, and future perspectives. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2023.03.015
Zhang, P., Wang, Y., Zhu, G., & Zhu, H. (2024a). Developing carotenoids-enhanced tomato fruit with multi-transgene stacking strategies. Plant Physiology and Biochemistry, 210, 108575. https://doi.org/10.1016/j.plaphy.2024.108575
Zhang, T., Li, W., Xie, R., Xu, L., Zhou, Y., Li, H., & Liu, K. (2020). CpARF2 and CpEIL1 interact to mediate auxin–ethylene interaction and regulate fruit ripening in papaya. The Plant Journal, 103(4), 1318-1337. https://doi.org/10.1111/tpj.14803
Zhang, Y., Zhou, P., Bozorov, T. A., & Zhang, D. (2021b). Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing. Plant Methods, 17, 1-9. https://doi.org/10.1186/s13007-021-00769-8
Zhao, B., Yi, X., Liu, S., Qi, K., Zhang, S., & Wu, X. (2024). The PbFRK1 gene from pear fruit affects sugar accumulation. Scientia Horticulturae, 323, 112536.     https://doi.org/10.1016/j.scienta.2023.112536
Zhong, Y., Chen, B., Wang, D., Zhu, X., Li, M., Zhang, J., & Chen, S. (2022). In vivo maternal haploid induction in tomato. Plant Biotechnology Journal, 20(2), 250-252. https://doi.org/10.1111/pbi.13755
Zhou, J., Li, D., Wang, G., Wang, F., Kunjal, M., Joldersma, D., & Liu, Z. (2020). Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of Integrative Plant Biology, 62(3), 269-286. https://doi.org/10.1111/jipb.12793
Zhou, J., Li, D., Wang, G., Wang, F., Kunjal, M., Joldersma, D., & Liu, Z. (2020). Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of integrative plant biology62(3), 269-286. https://doi.org/10.1111/jipb.12793
Zhou, J., Luan, X., Liu, Y., Wang, L., Wang, J., Yang, S., & Yao, D. (2023a). Strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding. Plants, 12(7), 1478. https://doi.org/10.3390/plants12071478
Zhou, M., Deng, L., Yuan, G., Zhao, W., Ma, M., Sun, C., & Li, C. (2023b). A CRISPR-Cas9-Derived male sterility system for tomato breeding. Agronomy, 13(7), 1785. https://doi.org/10.3390/agronomy13071785
Zhu, H., Li, C., & Gao, C. (2020a). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661-677. https://doi.org/10.1038/s41580-020-00288-9
Zhu, Y. C., Zhang, B., Allan, A. C., Lin‐Wang, K., Zhao, Y., Wang, K., & Xu, C. J. (2020b). DNA demethylation is involved in the regulation of temperature‐dependent anthocyanin accumulation in peach. The Plant Journal, 102(5), 965-976.https://doi.org/10.1111/tpj.14680
Zou, X., Du, M., Liu, Y., Wu, L., Xu, L., Long, Q., & Chen, S. (2021). CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. The Plant Journal, 106(4), 1039-1057. https://doi.org/10.1111/tpj.15217
Zou, X., Long, J., Zhao, K., Peng, A., Chen, M., Long, Q., & Chen, S. (2019). Overexpressing GH3. 1 and GH3. 1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PLoS One, 14(12), e0220017. https://doi.org/10.1101/697060
Zsogon, A., Cermak, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36(12), 1211-1216. https://doi.org/10.1038/nbt.4272