Ahmadi-Afzadi, M., Tahir I., & Nybom H. (2013). Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection. Postharvest Biology and Technology, 82, 51-58. http://doi.org/10.1016/j.postharvbio.2013.03.001
Ahmadi-Afzadi, M., Nybom, H., Ekholm, A., Tahir, I., & Rumpunen, K. (2015). Biochemical contents of apple peel and flesh affect level of partial resistance to blue mold. Postharvest Biology and. Technology, 110, 173-182. https://doi.org/10.1016/j.postharvbio.2015.08.008
Ahmadi-Afzadi, M., Orsel, M., Pelletier, S., Bruneau, M., Proux-Wéra, E., Nybom, H., & Renou J-P. (2018). Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple. Plant Growth Regulation, 85, 375-387. https://doi.org/10.1007/s10725-018-0388-2
Bianco, L., Cestaro, A., Sargent, D. J., Banchi, E., Derdak, S., Di Guardo, M., ... & Troggio, M. (2014). Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PloS One, 9, e110377. https://doi.org/10.1371/journal.pone.0110377
Bianco, L., Cestaro, A., Linsmith, G., Muranty, H., Denancé, C., Théron, A., ... & Troggio, M. (2016). Development and validation of the Axiom® Apple480K SNP genotyping array. The Plant Journal, 86, 62-74. https://doi.org/10.1038/s41598-019-39967-9
Chagné, D., Krieger, C., Rassam, M., Sullivan, M., Fraser, J., André, C., ... & Laing, W. A. (2012). QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 12, 1-16. https://doi.org/10.1186/1471-2229-12-12
Chávez, R.A.S., Peniche, R.T.M., Medrano, S.A., Muñoz, L.S., Ortíz, M.D.S.C., Espasa, N.T. & Sanchis, R.T. (2014). Effect of maturity stage, ripening time, harvest year and fruit characteristics on the susceptibility to Penicillium expansum Link. of apple genotypes from Queretaro, Mexico. Scientia Horticulture, 180, 86-93. https://doi.org/10.1016/j.scienta.2014.10.014
Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model space. Biometrika, 95, 759-771. https://doi.org/10.1093/biomet/asn034
Costa, F., Peace, C.P., Stella, S., Serra, S., Musacchi, S., Bazzani, M., Sansavini, S., Van de Weg, W.E. (2010). QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus x domestica Borkh.). Journal of Experimental Botany, 61, 3029-3039. https://doi.org/10.1093/jxb/erq130
Daccord, N., Celton, J. M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., ... & Bucher, E. (2017). High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49, 1099-1106. https://doi.org/10.1038/ng.3886
Ingvarsson, P.K., & Street, N.R. (2011). Association genetics of complex traits in plants. New Phytologist, 189, 909-922. https://doi.org/10.1111/j.1469-8137.2010.03593.x
Janisiewicz, W.J., Saftner, R.A., Conway, W.S., & Forsline, P.L. (2008). Preliminary evaluation of apple germplasm from Kazakhstan for resistance to postharvest blue mold in fruit caused by Penicillium expansum. HortScience. 43, 420-426. https://doi.org/10.21273/hortsci.43.2.420
Janisiewicz, W.J., Nichols, B., Bauchan, G., Chao, T.C., Jurick, & I.I. W.M. (2016). Wound responses of wild apples suggest multiple resistance mechanisms against blue mold decay. Postharvest Biology and Technology, 117, 132-140. https://doi.org/10.1016/j.postharvbio.2015.12.004
Kunihisa, M., Moriya, S., Abe, K., Okada, K., Haji, T., Hayashi, T., ... & Yamamoto, T. (2014). Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breeding Science, 64, 240-251. https://doi.org/10.1270/jsbbs.64.240
Longhi, S., Moretto, M., Viola, R., Velasco, R., & Costa, F. (2012). Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). Journal of Experimental Botany, 63,1107-1121. https://doi.org/10.1093/jxb/err326
Migicovsky, Z., Yeats, T.H., Watts, S., Song, J., Forney, C.F., Burgher-MacLellan, K., Somers, D.J., Gong, Y., Zhang, Z., Erebalov, J., Velzen, R.V., Giovannoni, J.G., Rose J.K.C., & Myles, S. (2021). Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics, 12, 908. https://doi.org/10.1101/708040
Morimoto, T., Hiramatsu, Y., & Banno, K. (2013). A major QTL controlling earliness of fruit maturity linked to the red leaf/red flesh trait in apple cv. 'Maypole'. Journal of the Japanese Society for Horticultural Science, 82, 97-105. https://doi.org/10.2503/jjshs1.82.97
Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z., Costich, D.E., & Buckler, E.S. (2009). Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell, 21, 2194–2202. https://doi.org/10.1105/tpc.109.068437
Naeem Abadi, T., Keshavarzi, M., Alaee, H., Hajnagari, H., & Hoseinava, S. (2014). Blue mold (Penicillium expansum) decay resistance in apple cultivars, and its association with fruit physicochemical traits. Journal of Agricultural Science and Technology, 16, 635-644. http://doi.org/ 20.1001.1.16807073.2014.16.3.8.6
Naeem-Abadi, T., & Keshavarzi, M. (2016). Involvement of protective enzymes and phenols in decay (Penicillium expansum) resistance in apple. Journal of Crop Protection, 5, 349-357. https://doi.org/10.18869/modares.jcp.5.3.349
Norelli, J.L., Wisniewski, M., Fazio, G., Burchard, E., Gutierrez, B., Levin, E., & Droby, S. (2017). Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. Plos One, 12, 1-24. https://doi.org/10.1371/journal.pone.0172949
Nybom, H., Ahmadi-Afzadi, M., Sehic J. & Hertog, M. (2013). DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genetics and Genomes, 9, 279-290. https://doi.org/10.1007/s11295-012-0554-z
Nybom, H., Ahmadi-Afzadi, M., Rumpunen, K. & Tahir, I. (2020). Review of the impact of apple fruit ripening, texture and chemical contents on genetically determined susceptibility to storage rots. Plants, 9, 831. https://doi.org/10.3390/plants9070831
Prusky, D., McEvoy, J.L., Saftner, R., Conway, W.S., & Jones, R. (2004). Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathology, 94, 44-51. https://doi.org/10.1094/phyto.2004.94.1.44
Segura, V., Vilhjálmsson, B.J., Platt, A., Korte, A., Seren, Ü., Long, Q., & Nordborg, M. (2012). An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics, 44, 825-830. https://doi.org/10.1038/ng.2314
Smith, R.B., Loucheede, E.C., Franklin, E.W., & McMillan, I. (1979). The starch-iodine test for determining stage of maturation in apples. Canadian Journal of Plant Science, 59, 725-735. https://doi.org/10.4141/cjps79-113
Sun, J., Janisiewicz, W.J., Nichols, B., Jurick II, W.M. & Chen, P. (2017). Composition of phenolic compounds in wild apple with multiple resistance mechanisms against postharvest blue mold decay. Postharvest Biology and Technology, 127, 68-75. https://doi.org/10.1016/j.postharvbio.2017.01.006
Tahir, I., Nybom, H., Ahmadi-Afzadi, M., Roen, K., Sehic, J., & Roen, D. (2015). Susceptibility to blue mold caused by Penicillium expansum in apple cultivars adapted to a cool climate. European Journal of Horticultural Science, 79, 218-225. https://doi.org/10.17660/ejhs.2015/80.3.4
Torres, R., Valentines, M.C., Usall, J., Vinas, I., & Larrigaudiere, C. (2003). Possible involvement of hydrogen peroxide in the development of resistance mechanisms in 'Golden Delicious' apple fruit. Postharvest Biology and Technology, 27, 235-242. https://doi.org/10.1016/s0925-5214(02)00110-2
Urrestarazu Vidart, J., Muranty, H., Denancé, C., Leforestier, D., Ravon, E., Guyader, A., ... & Durel, C. E. (2017). Genome-wide association mapping of flowering and ripening periods in apple. Frontiers in Plant Science, 8, 192. https://doi.org/10.3389/fpls.2017.01923
Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., ... & Viola, R. (2010). The genome of the domesticated apple (Malus× domestica Borkh.). Nature genetics, 42, 833-839. https://doi.org/10.1038/ng.654
Vilanova, L., Vinas, I., Torres, R., Usall, J., Buron-Moles, G., & Teixido, N. (2014a). Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. International Journal of Food Microbiology, 178, 39-49. https://doi.org/10.1016/j.ijfoodmicro.2014.02.022
Vilanova, L., Wisniewski, M., Norelli, J., Vinas, I., Torres, R., Usall, J., Phillips, J., Droby, S., & Teixido, N. (2014b). Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Molecular Biology Reporter, 32, 566-583. https://doi.org/10.1007/s11105-013-0676-y
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.C., Hu, L., Yamasaki, M., Yoshida, S., Kitano, H., Hirano, K., & Matsuoka, M. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48, 927-934. https://doi.org/10.1038/ng.3596
Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821-824. https://doi.org/10.1038/ng.2310