Document Type : Review Article

Authors

Faculty of Pharmacy Universitas Indonesia; Depok 16424 West Java, Indonesia

Abstract

Purpose: Kratom (Mitragyna speciosa) is a tropical plant native to Southeast Asia, widely used for traditional and emerging therapeutic purposes. This review investigates the environmental and physiological determinants of phytochemical variation in Mitragyna speciosa (kratom), with a focus on optimizing alkaloid yield and raw material quality. As kratom gains commercial traction, particularly in Western markets, the need for standardizing cultivation practices becomes increasingly urgent. Findings: Geographic origin significantly influences mitragynine content, with native Southeast Asian samples displaying higher and more consistent levels than those cultivated elsewhere. Environmental factors such as light exposure, temperature, soil acidity, and nutrient composition play crucial roles in modulating both plant morphology and secondary metabolite biosynthesis. Internally, leaf maturity, organ specificity, and vein color are linked to variable alkaloid profiles, reflecting genetic and developmental influences. Alkaloid biosynthesis is regulated not only by climate and geography but also at the molecular level through gene–environment interactions.  Studies across continents and related species further underscore the diversity and adaptability of the genus. These findings suggest that integrated, site-specific agronomic strategies are essential to support kratom’s evolution as a standardized phytopharmaceutical. Limitations: Most existing studies are regionally constrained, lack standardized methodology, and rarely incorporate multi-site or molecular validation, limiting their broader applicability. Directions for future research: Future work should prioritize field-based, multi-environment trials to validate the effects of environmental variables on alkaloid biosynthesis and biomass traits. In addition, controlled environment experiments, genetic profiling, and enzyme-specific biosynthetic studies are essential to refine cultivation protocols and support regulatory frameworks. Integrative agronomic and phytochemical modeling is also needed to guide the development of standardized and high-quality kratom production systems.

Keywords

Main Subjects

Alagbe, J. O., Shittu, M. D., Adesina, A. Y., Grace, C. J., Cincinsoko, K. M., Oluwafemi, B. S., & Erikanobong, E. (2024). The approximate mineral and phytochemical content of the leaves, stem bark, and roots of Pterocarpus erinaceus in India. Cerrado: Agricultural and Biological Research, 1(1), 32–41. https://doi.org/10.14295/cerrado.v1i1.562
Alford, A. S., Moreno, H. L., Benjamin, M. M., Dickinson, C. F., & Hamann, M. T. (2025). Exploring the therapeutic potential of mitragynine and corynoxeine: Kratom-derived indole and oxindole alkaloids for pain management. Pharmaceuticals, 18(2), 222. https://doi.org/10.3390/ph18020222
Ameline, A., Gheddar, L., Arbouche, N., Blanchot, A., Raul, J. S., & Kintz, P. (2024). Testing for Kratom alkaloids in fingernail clippings – not only mitragynine. Journal of Pharmaceutical and Biomedical Analysis, 243. https://doi.org/10.1016/j.jpba.2024.116078
Antoni, Zakiah, Z., & Mukarlina. (2023). Pertumbuhan bibit Kratom merah (Mitragyna speciosa Korth.) dengan pemberian pupuk organik cair kotoran ayam potong [Growth of red Kratom seedlings (Mitragyna speciosa Korth.) with the provision of liquid organic fertilizer from broiler chicken manure]. Journal Buana Sains, 23(2), 1412–1638. https://doi.org/doi.org/10.33366/bs.v23i2.4453
Arief, I., Sunnardianto, G. K., Khairi, S., & Saputri, W. D. (2025). The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. Journal of Integrative Bioinformatics, 21(4). https://doi.org/10.1515/jib-2023-0030
Bayu, A., Rahmawati, S. I., Karim, F., Panggabean, J. A., Nuswantari, D. P., Indriani, D. W., Ahmadi, P., Witular, R., Dharmayanti, N. L. P. I., & Putra, M. Y. (2024). An in vitro examination of whether Kratom extracts enhance the cytotoxicity of low-dose doxorubicin against A549 human lung cancer cells. Molecules, 29(6). https://doi.org/10.3390/molecules29061404
Begum, T., Arzmi, M. H., Khatib, A., Uddin, A. B. M. H., Aisyah Abdullah, M., Rullah, K., Mat So’ad, S. Z., Zulaikha Haspi, N. F., Nazira Sarian, M., Parveen, H., Mukhtar, S., & Ahmed, Q. U. (2025). A review on Mitragyna speciosa (Rubiaceae) as a prominent medicinal plant based on ethnobotany, phytochemistry and pharmacological activities. Natural Product Research, 39(6), 1636–1652. https://doi.org/10.1080/14786419.2024.2371564
Boffa, L., Ghè, C., Barge, A., Muccioli, G., & Cravotto, G. (2018). Alkaloid profiles and activity in different Mitragyna speciosa strains. Natural Product Communications, 13(9), 1111–1116. https://doi.org/10.1177/1934578X1801300904
Borbély, P., Gasperl, A., Pálmai, T., Ahres, M., Asghar, M. A., Galiba, G., Müller, M., & Kocsy, G. (2022). Light intensity- and spectrum-dependent redox regulation of plant metabolism. Antioxidants, 11(7), 1311. https://doi.org/10.3390/antiox11071311
Calvache, M. P. G., Obeng, S., Leon, F., Gamez‐Jimenez, L. R., Patel, A., Ho, N. P., Crowley, M. L., Pallares, V., Mottinelli, M., McCurdy, C. R., McMahon, L. R., & Hiranita, T. (2021). In vitro and in vivo pharmacological comparison of Mu‐Opioid receptor activity of the Kratom (Mitragyna speciosa) alkaloid mitragynine and its metabolite 7‐hydroxymitragynine. Alzheimer’s & Dementia, 17(S9). https://doi.org/10.1002/alz.058605
Cao, S. (2019). Research and application of peat in agriculture. IOP Conference Series: Earth and Environmental Science, 384(1), 012174. https://doi.org/10.1088/1755-1315/384/1/012174
Chear, N. J.-Y., León, F., Sharma, A., Kanumuri, S. R. R., Zwolinski, G., Abboud, K. A., Singh, D., Restrepo, L. F., Patel, A., Hiranita, T., Ramanathan, S., Hampson, A. J., McMahon, L. R., & McCurdy, C. R. (2021). Exploring the chemistry of alkaloids from Malaysian Mitragyna speciosa (Kratom) and the role of oxindoles on human opioid receptors. Journal of Natural Products, 84(4), 1034–1043. https://doi.org/10.1021/acs.jnatprod.0c01055
Chongdi, S., Uthairatsamee, S., Ngernsaengsaruay, C., Andriyas, T., & Leksungnoen, N. (2025). Regional variability in growth and leaf functional traits of Mitragyna speciosa in Thailand. International Journal of Plant Biology, 16(1), 24. https://doi.org/10.3390/ijpb16010024
Chua, L. S. L. , S. G. H. (2001). Mitragyna speciosa (Korth.) Havil. PROSEA Foundation, Bogor, Indonesia. prota4u.org/prosea
Cinosi, E., Martinotti, G., Simonato, P., Singh, D., Demetrovics, Z., Roman-Urrestarazu, A., Bersani, F. S., Vicknasingam, B., Piazzon, G., Li, J. H., Yu, W. J., Kapitány-Fövény, M., Farkas, J., Di Giannantonio, M., & Corazza, O. (2015). Following “the Roots” of Kratom (Mitragyna speciosa): the evolution of an enhancer from a traditional use to increase work and productivity in Southeast Asia to a recreational psychoactive drug in Western countries. BioMed Research International, 2015. https://doi.org/10.1155/2015/968786
Deng, Z., & Harbaugh, B. K. (2006). Independent inheritance of leaf shape and main vein color in Caladium. Journal of the American Society for Horticultural Science, 131(1), 53–58. https://doi.org/10.21273/JASHS.131.1.53
Diversion Control Division, D. (2024). Kratom (Mitragyna speciosa Korth).
Edi, S. U., Indrawati, U. S. Y. V., & . J. (2024). Characterization of physicochemical properties and and heavy metals content of soils under Kratom (Mitragyna speciosa) Cultivation, Kapuas Hulu District, Indonesia. Indian Journal of Agricultural Research, 58, 1109-1114. https://doi.org/10.18805/IJARe.AF-845
Flores-Bocanegra, L., Raja, H. A., Graf, T. N., Augustinović, M., Wallace, E. D., Hematian, S., Kellogg, J. J., Todd, D. A., Cech, N. B., & Oberlies, N. H. (2020). The chemistry of Kratom Mitragyna speciosa: updated characterization data and methods to elucidate indole and oxindole alkaloids. Journal of Natural Products, 83(7), 2165–2177. https://doi.org/10.1021/acs.jnatprod.0c00257
Georgescu, C., Frum, A., Virchea, L.-I., Sumacheva, A., Shamtsyan, M., Gligor, F.-G., Olah, N. K., Mathe, E., & Mironescu, M. (2022). Geographic variability of berry phytochemicals with antioxidant and antimicrobial properties. Molecules, 27(15), 4986. https://doi.org/10.3390/molecules27154986
Grundmann, O., Hendrickson, R. G., & Greenberg, M. I. (2023). Kratom: History, pharmacology, current user trends, adverse health effects and potential benefits. Disease-a-Month, 69(6), 101442. https://doi.org/10.1016/J.DISAMONTH.2022.101442
Hank, H., Lásló, I., Bálványos, I., Kursinszki, I., Kovács, Gy., Szöke, E., & Töth, E. (2003). Effect of magnesium on the growth and alkaloid production of hairy root cultures. Acta Horticulturae, 597, 271–274. https://doi.org/10.17660/ActaHortic.2003.597.39
Hassan, Z., Muzaimi, M., Navaratnam, V., Yusoff, N. H. M., Suhaimi, F. W., Vadivelu, R., Vicknasingam, B. K., Amato, D., von Hörsten, S., Ismail, N. I. W., Jayabalan, N., Hazim, A. I., Mansor, S. M., & Müller, C. P. (2013). From Kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neuroscience & Biobehavioral Reviews, 37(2), 138–151. https://doi.org/10.1016/j.neubiorev.2012.11.012
Hikmatullah, & Sukarman. (2014). Physical and chemical properties of cultivated peat soils in four trial sites of ICCTF in Kalimantan and Sumatra, Indonesia. Journal of Tropical Soils, 19(3), 131–141. https://doi.org/DOI:10.5400/jts.2014.19.3.131
Huang, K., Li, M., Li, R., Rasul, F., Shahzad, S., Wu, C., Shao, J., Huang, G., Li, R., Almari, S., Hashem, M., & Aamer, M. (2023). Soil acidification and salinity: the importance of biochar application to agricultural soils. Frontiers in Plant Science, 14, 1206820. https://doi.org/10.3389/fpls.2023.1206820
Huisman, G., Menke, M., Grundmann, O., Schreiber, R., & Mason, N. (2023). Examining the psychoactive differences between Kratom strains. International Journal of Environmental Research and Public Health, 20(14), 6425. https://doi.org/10.3390/ijerph20146425
Indriyanti, N., Hajrah, H., Priastomo, M., Samsul, E., Prabowo, W. C., & Prasetya, F. (2024). Efektivitas ekstrak kratom (Mitragyna speciosa) pada inhibisi withdrawal syndrome model adiksi morfin [Effectiveness of kratom (Mitragyna speciosa) extract on the inhibition of withdrawal syndrome in a morphine addiction model]. Jurnal Mandala Pharmacon Indonesia, 10(1), 145–150. https://doi.org/10.35311/jmpi.v10i1.535
Jamil, S., Turabi, T. H., Ahmad, S., Riaz, M., Wariss, H. M., & Akter, Q. S. (2025). Comparative investigation of the nutritional profiling and antipyretic activity of Moringa oleifera leaves, bark, and root from different sites of Punjab, Pakistan. Food Science & Nutrition, 13(1), e4706. https://doi.org/10.1002/fsn3.4706
Janthongkaw, A., Klaophimai, S., Khampaya, T., Yimthiang, S., Yang, Y., Ma, R., Bumyut, A., & Pouyfung, P. (2023). Effect of green and red Thai Kratom (Mitragyna speciosa) on pancreatic digestive enzymes (alpha-glucosidase and lipase) and acetyl-carboxylase 1 activity: A possible therapeutic target for obesity prevention. PLOS ONE, 18(9), e0291738. https://doi.org/10.1371/journal.pone.0291738
Kafo, A., Elsalami, R., & Hassan, M. (2024). Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy, 54(3), 350–358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150
Kan, P.-W., Cheng, Y.-C., & Yeh, D.-M. (2021). Mechanism of leaf vein coloration and inheritance of leaf vein color, flower form, and floral symmetry in Gloxinia. Journal of the American Society for Horticultural Science, 146(3), 178–183. https://doi.org/10.21273/JASHS05034-20
Kim, K., Shahsavarani, M., Garza‐García, J. J. O., Carlisle, J. E., Guo, J., De Luca, V., & Qu, Y. (2023). Biosynthesis of Kratom opioids. New Phytologist, 240(2), 757–769. https://doi.org/10.1111/nph.19162
Kruegel, A. C., Uprety, R., Grinnell, S. G., Langreck, C., Pekarskaya, E. A., Le Rouzic, V., Ansonoff, M., Gassaway, M. M., Pintar, J. E., Pasternak, G. W., Javitch, J. A., Majumdar, S., & Sames, D. (2019). 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Central Science, 5(6), 992–1001. https://doi.org/10.1021/acscentsci.9b00141
Kumar, S., Yadav, M., Yadav, A., & Yadav, J. P. (2017). Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South African Journal of Botany, 111, 50–59. https://doi.org/10.1016/j.sajb.2017.03.012
Leksungnoen, N., Andriyas, T., Ngernsaengsaruay, C., Uthairatsamee, S., Racharak, P., Sonjaroon, W., Kjelgren, R., Pearson, B. J., McCurdy, C. R., & Sharma, A. (2022). Variations in mitragynine content in the naturally growing Kratom (Mitragyna speciosa) population of Thailand. Frontiers in Plant Science, 13, 1028547. https://doi.org/10.3389/FPLS.2022.1028547
Leksungnoen, N., Andriyas, T., Ku-Or, Y., Chongdi, S., Tansawat, R., Aramrak, A., Ngernsaengsaruay, C., Uthairatsamee, S., Sonjaroon, W., Thongchot, P., Ardsiri, S., & Pongchaidacha, P. (2025). The effect of light intensity and polyethylene-glycol-induced water stress on the growth, mitragynine accumulation, and total alkaloid content of Kratom (Mitragyna speciosa). Horticulturae, 11(3), 272. https://doi.org/10.3390/horticulturae11030272
León, F., Habib, E., Adkins, J. E., Furr, E. B., McCurdy, C. R., & Cutler, S. J. (2009). Phytochemical characterization of the leaves of Mitragyna speciosa grown in USA. Natural Product Communications, 4(7), 907–910. https://doi.org/10.1177/1934578X0900400705
Löfstrand, S. D., Krüger, Å., Razafimandimbison, S. G., & Bremer, B. (2014). Phylogeny and generic delimitations in the sister tribes Hymenodictyeae and Naucleeae (Rubiaceae). Systematic Botany, 39(1), 304–315. https://doi.org/10.1600/036364414X678116
Mahaprom, K., Chokpaisarn, J., Kunworarath, N., Paduka, W., Phoopha, S., Limsuwan, S., & Neamsuvan, O. (2025). In vivo analgesic, anti-inflammatory activities, and phytochemical profile of Thai herbal Kratom recipe, a traditional Thai herbal medicine for muscle pain relief. Journal of Ethnopharmacology, 343, 119442. https://doi.org/10.1016/j.jep.2025.119442
Manwill, P. K., Flores-Bocanegra, L., Khin, M., Raja, H. A., Cech, N. B., Oberlies, N. H., & Todd, D. A. (2022). Kratom (Mitragyna speciosa) validation: quantitative analysis of indole and oxindole alkaloids reveals chemotypes of plants and products. Planta Medica, 88(9–10), 838–852. https://doi.org/10.1055/a-1795-5876
Masriani, M., Melania, P., Muharini, R., Alimuddin, A. H., & Sartika, R. P. (2024). Total phenolic and flavonoids content, and antioxidant activity of Kratom (Mitragyna speciosa Korth.) leaf ethanol extract. Jurnal Natural, 24(1), 16–21. https://doi.org/10.24815/jn.v24i1.33125
Masriani, M., Muharini, R., Wijayanti, D. K., Melanie, P., & Widiansari, M. L. (2023). Phytochemical Screening of Ethanol Extracts from Three Variants of Kratom Leaves (Mitragyna speciosa Korth.). Hydrogen: Jurnal Kependidikan Kimia, 11(2), 192. https://doi.org/10.33394/hjkk.v11i2.7122
Nakaphan, T., Teerachaisakul, M., Puttum, S., Sompimai, K., & Nootim, P. (2016). Traditional use of Kratom (Mitragyna speciosa Korth) among folk healers in southern Thailand. Journal of Thai Traditional and Alternative Medicine, 14(3), 274-285.
Nawaka, N., Lertcanawanichakul, M., Porntadavity, S., Pussadhamma, B., & Jeenduang, N. (2025). Kratom leaf extracts exert hypolipidaemic effects via the modulation of PCSK9 and LDLR pathways in HepG2 cells. Scientific Reports, 15(1), 15696. https://doi.org/10.1038/s41598-025-00711-1
Ng, K., & Ha, T. (2024). Extraction and detection of mitragynine in Kratom leaves by high-performance liquid chromatography. Natural Product Research, 39(14), 4074-4079. https://doi.org/10.1080/14786419.2024.2331602
Nguyen, T., & Dang, T. T. (2021). Cytochrome P450 enzymes as key drivers of alkaloid chemical diversification in plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.682181
Nguyen, H. T., Miyamoto, A., Hoang, H. T., Vu, T. T. T., Pothinuch, P., & Nguyen, H. T. T. (2024). Effects of maturation on antibacterial properties of Vietnamese mango (Mangifera indica) Leaves. Molecules, 29(7), 1443. https://doi.org/10.3390/molecules29071443
Nilus, R., Lee Ying Fah, & Alexander Hastie. (2011). Species selection trial in burnt peat swamp vegetation in southwest coast of Sabah, Malaysia. In Proceedings of the International Symposium Rehabilitation of Tropical Rainforest Ecosystems, Serdang, Kuala Lumpur, Malaysia.
Novianry, V., Astuti, P., & Andriani. (2024). Comparative analysis of mitragynine content in Kratom leaves (Mitragyna speciosa Korth) from Kabupaten Kapuas Hulu Using HPLC Method. SCISCITATIO, 5(2), 87–93. https://doi.org/10.21460/sciscitatio.2024.52.183
Obeng, S., Crowley, M. L., Mottinelli, M., León, F., Zuarth Gonzalez, J. D., Chen, Y., Gamez-Jimenez, L. R., Restrepo, L. F., Ho, N. P., Patel, A., Martins Rocha, J., Alvarez, M. A., Thadisetti, A. M., Park, C. R., Pallares, V. L. C., Milner, M. J., Canal, C. E., Hampson, A. J., McCurdy, C. R., Hiranita, T. (2024). The Mitragyna speciosa (Kratom) alkaloid mitragynine: Analysis of adrenergic α2 receptor activity in vitro and in vivo. European Journal of Pharmacology, 980, 176863. https://doi.org/10.1016/j.ejphar.2024.176863
Ortiz, Y. T., Mukhopadhyay, S., McCurdy, C. R., McMahon, L. R., & Wilkerson, J. L. (2024). Efficacy and receptor activity of mitragynine and speciogynine in attenuating cancer-induced bone pain associated mechanical allodynia. The Journal of Pain, 25(4), 12. (Abstract). https://doi.org/10.1016/j.jpain.2024.01.060
Pansai, N., Wungsintaweekul, J., & Wichienchot, S. (2024). The effects of Mitragyna speciosa extracts on intestinal microbiota and their metabolites in vitro fecal fermentation. Journal of the Science of Food and Agriculture, 104(14), 8500–8510. https://doi.org/10.1002/jsfa.13677
Phongprueksapattana, S., Putalun, W., Keawpradub, N., & Wungsintaweekul, J. (2008). Mitragyna speciosa: hairy root culture for triterpenoid production and high yield of mitragynine by regenerated plants. Zeitschrift Für Naturforschung C, 63(9–10), 691–698. https://doi.org/10.1515/znc-2008-9-1014
Phromchan, W., Defri, I., Saensano, C., Chookaew, A., Chiarawipa, R., & Sriwiriyajan, S. (2024). Morphological and physiological properties of Kratom (Mitragyna speciosa) leaves: Macronutrients, phytochemicals, antioxidants, and mitragynine content. Plant Science Today, 11(2), 762-770. https://doi.org/10.14719/pst.2991
Pramulya, M., Salsabila, U., & Ramadhan, T. H. (2024). Examining the impact of cultivated land distance from riparian areas on the growth and quality of red Kratom alkaloids. Journal of Global Innovations in Agricultural Sciences, 605–612. https://doi.org/10.22194/JGIAS/24.1351
Prasetya, R., & Sudarwati, T. (2023). Kratom (Mitragyna speciosa) leaf ethanol extract showed in vivo analgesic activity. Pharmacology and Clinical Pharmacy Research, 8, 102–107. https://doi.org/doi:10.15416/pcpr.v8i2.40727
Predescu, I.-A., Jîjie, A.-R., Pătraşcu, D., Pasc, A.-L.-V., Piroş, E.-L., Trandafirescu, C., Oancea, C., Dehelean, C. A., & Moacă, E.-A. (2025). Unveiling the complexities of medications, substance abuse, and plants for recreational and narcotic purposes: An in-depth analysis. Pharmacy, 13(1), 7. https://doi.org/10.3390/pharmacy13010007
Prevete, E., Catalani, V., Singh, D., Kuypers, K. P. C., Theunissen, E. L., Townshend, H. D., Banayoti, H., Ramaekers, J. G., Pasquini, M., & Corazza, O. (2024). A preliminary inventory of Kratom (Mitragyna Speciosa) products and vendors on the darknet and cryptomarkets. Journal of Psychoactive Drugs, 56(4), 485–495. https://doi.org/10.1080/02791072.2023.2242361
Priatna, P. A., Rahmah, S., Widyowati, R., & Sukadirman. (2025). Identification of LC-MS/MS and docking analysis of topoisomerase iiα inhibition from Kratom leaves (Mitragyna speciosa) as potential anticancer agents. International Journal of Applied Pharmaceutics, 119–125. https://doi.org/10.22159/ijap.2025.v17s1.18
Putri, M., Wardoyo, E. R. P., & Kurniatuhadi, R. (2023). Potensi ekstrak metanol akar dan batang kratom (Mitragyna speciosa Korth.) sebagai antibakteri Propionibacterium acnes ATCC 6919 penyebab jerawat [Potential of methanol extract of kratom (Mitragyna speciosa Korth.) roots and stems as antibacterial against Propionibacterium acnes ATCC 6919, the causative agent of acne]. Protobiont, 12(2), 43–49.
Qi, Y., Gao, P., Yang, S., Li, L., Ke, Y., Zhao, Y., Huang, F., & Yu, L. (2024). Unveiling the impact of nitrogen deficiency on alkaloid synthesis in konjac corms (Amorphophallus muelleri Blume). BMC Plant Biology, 24(1), 923. https://doi.org/10.1186/s12870-024-05642-z
Rahmawati, S. I., Indriani, D. W., Ningsih, F. N., Hardhiyuna, M., Firdayani, F., Ahmadi, P., Rosyidah, A., Septiana, E., Dharmayanti, N. L. P. I., Bayu, A., & Putra, M. Y. (2024). Dual anti-inflammatory activities of COX-2/5-LOX driven by Kratom alkaloid extracts in lipopolysaccharide-induced RAW 264.7 cells. Scientific Reports, 14(1), 28993. https://doi.org/10.1038/s41598-024-79229-x
Romeu, A. G., Cox, D. J., Smith, K. E., Dunn, K. E., & Griffiths, R. R. (2020). Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug and Alcohol Dependence, 208, 107849. https://doi.org/10.1016/J.DRUGALCDEP.2020.107849
Rossalinda, B., Astina, A., & Palupi, T. (2024). Respon pertumbuhan bibit kratom terhadap jenis tanah yang berbeda [Response of kratom seedlings growth to different soil types]. Journal Sains Pertanian Equator, 13(2), 576. https://doi.org/10.26418/jspe.v13i2.77021
Saleh, S. R., Hasan, M. H., Said, Md. I. M., Adenan, M. I., & Adam, A. (2012). Antioxidant, anti-inflammatory and antinociceptive activities of Mitragyna speciosa and Erythroxylum cuneatum. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 1087–1091. https://doi.org/10.1109/SHUSER.2012.6268787
Saravanakumar, V., Masi, C., Neme, I., Arjun, K., & Dinakarkumar, Y. (2022). Geographical comparison of phytoconstituents in Euphorbia hirta: A pilot study in Ethiopia and India. Bulletin of Pioneering Researches of Medical and Clinical Science, 1(2), 34–41. https://doi.org/10.51847/ErNYBrhrFF
Schotte, C., Jiang, Y., Grzech, D., Dang, T.-T. T., Laforest, L. C., León, F., Mottinelli, M., Nadakuduti, S. S., McCurdy, C. R., & O’Connor, S. E. (2023). Directed biosynthesis of mitragynine stereoisomers. Journal of the American Chemical Society, 145(9), 4957–4963. https://doi.org/10.1021/jacs.2c13644
Sengnon, N., Vonghirundecha, P., Chaichan, W., Juengwatanatrakul, T., Onthong, J., Kitprasong, P., Sriwiriyajan, S., Chittrakarn, S., Limsuwanchote, S., & Wungsintaweekul, J. (2023). Seasonal and geographic variation in alkaloid content of Kratom (Mitragyna speciosa (Korth.) Havil.) from Thailand. Plants, 12(4), 949. https://doi.org/10.3390/PLANTS12040949/S1
Shellard, E. J. (1983). Mitragyna: A note on the alkaloids of African species. Journal of Ethnopharmacology, 8(3), 345–347. https://doi.org/10.1016/0378-8741(83)90073-9
Singh, D., Narayanan, S., Grundmann, O., Dzulkapli, E. Bin, & Vicknasingam, B. (2019). Effects of Kratom (Mitragyna Speciosa Korth.) use in regular users. Substance Use & Misuse, 54(14), 2284–2289. https://doi.org/10.1080/10826084.2019.1645178
Singh, D., Yeou, N. J. C., Narayanan, S., Leon, F., Sharma, A., McCurdy, C. R., Avery, B. A., & Balasingam, V. (2020). Patterns and reasons for Kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. Journal of Ethnopharmacology, 249, 112462. https://doi.org/10.1016/j.jep.2019.112462
Singh, D., Azuan, M. A., & Narayanan, S. (2023). Kratom (Mitragyna speciosa) use in a sample of drug-dependent adolescents in rehabilitation for drug use in Malaysia. Journal of Ethnicity in Substance Abuse, 1–16. https://doi.org/10.1080/15332640.2023.2293941
Sitthiphon, B., & Prakasit, W. (2025). Understanding the effects and clinical potential of Kratom (Mitragyna speciosa): A narrative review. The Bangkok Medical Journal, 21(1), 73–77. https://doi.org/10.31524/bkkmedj.2025.13.002
Smith, K. E., Panlilio, L. V., Sharma, A., McCurdy, C. R., Feldman, J. D., Mukhopadhyay, S., Kanumuri, S. R. R., Kuntz, M. A., Hill, K., & Epstein, D. H. (2024). Time course of Kratom effects via ecological momentary assessment, by product type, dose amount, and assayed alkaloid content. Drug and Alcohol Dependence, 264, 112460. https://doi.org/10.1016/j.drugalcdep.2024.112460
Sofia, N., Yuniarti, Y., & Rosidah, R. (2022). Uji fitokimia terhadap tanaman obat kratom (Mitragyna speciosa) di KHDTK ULM [Phytochemical test of kratom (Mitragyna speciosa) medicinal plant in KHDTK ULM]. Jurnal Sylva Scienteae, 5(2), 218-224. https://doi.org/10.20527/jss.v5i2.5356
Sornsenee, P., Chimplee, S., & Romyasamit, C. (2025). Evaluation of antibacterial, antibiofilm, antioxidant, and anti-inflammatory activities of Kratom leaves (Mitragyna speciosa) fermentation supernatant containing Lactobacillus rhamnosus GG. Probiotics and Antimicrobial Proteins, 17(1), 328–340. https://doi.org/10.1007/s12602-023-10142-x
Sudmoon, R., Tanee, T., Wonok, W., Ameamsri, U., Liehr, T., Daduang, S., Siripiyasing, P., & Chaveerach, A. (2025). Discovery of rhynchophylline and mitraphylline in two Thai Mitragyna species and the investigation of their biological activity via opioid gene expression analysis. Scientific Reports, 15(1), 5865. https://doi.org/10.1038/s41598-025-89715-5
Suhaimi, F. W., Yusoff, N. H. M., Hassan, R., Mansor, S. M., Navaratnam, V., Müller, C. P., & Hassan, Z. (2016). Neurobiology of Kratom and its main alkaloid mitragynine. Brain Research Bulletin, 126, 29–40. https://doi.org/10.1016/J.BRAINRESBULL.2016.03.015
Sureram, S., Chutiwitoonchai, N., Pooprasert, T., Sangsopha, W., Limjiasahapong, S., Jariyasopit, N., Sirivatanauksorn, Y., Khoomrung, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2024). Discovery of procyanidin condensed tannins of (−)-epicatechin from Kratom, Mitragyna speciosa, as virucidal agents against SARS-CoV-21. International Journal of Biological Macromolecules, 273. https://doi.org/10.1016/j.ijbiomac.2024.133059
Tabanelli, R., Brogi, S., & Calderone, V. (2023). Targeting opioid receptors in addiction and drug withdrawal: where are we going? International Journal of Molecular Sciences, 24(13), 10888. https://doi.org/10.3390/ijms241310888
Takayama, H., Kurihara, M., Kitajima, M., Said, I. M., & Aimi, N. (1998). New indole alkaloids from the leaves of Malaysian Mitragyna speciosa. Tetrahedron, 54(29), 8433–8440. https://doi.org/10.1016/S0040-4020(98)00464-5
Takayama, H. (2004). Chemistry and pharmacology of analgesic indole alkaloids from the Rubiaceous plant, Mitragyna speciosa. Chemical and Pharmaceutical Bulletin, 52(8), 916–928. https://doi.org/10.1248/CPB.52.916
Tampanna, N., Wanitsuwan, W., Chewatanakornkul, S., Wangkulangkul, P., Theapparat, Y., Detarun, P., & Wichienchot, S. (2025). The role of Kratom (Mitragyna speciosa Korth.) extract in medical foods for obese patients: Effects on gut microbiota in a colon model. Food Research International, 204, 115935. https://doi.org/10.1016/j.foodres.2025.115935
Tanti, Lalangi, C. A., Arfiyani, E., Ningtias, W., & Maulida, E. N. (2021). Mitragynine percentages of various Kratom variants seized in Indonesia: A quantitative analysis using liquid chromatography-photo diode array detector. International Journal of Applied Pharmaceutics, 13(5), 252–256. https://doi.org/10.22159/ijap.2021v13i5.41910
Thoma, F., Somborn-Schulz, A., Schlehuber, D., Keuter, V., & Deerberg, G. (2020). Effects of light on secondary metabolites in selected leafy greens: A review. Frontiers in Plant Science, 11, 497. https://doi.org/10.3389/fpls.2020.00497
Tuntiyasawasdikul, S., Junlatat, J., Tabboon, P., Limpongsa, E., & Jaipakdee, N. (2024). Mitragyna speciosa ethanolic extract: Extraction, anti-inflammatory, cytotoxicity, and transdermal delivery assessments. Industrial Crops and Products, 208, 117909. https://doi.org/10.1016/j.indcrop.2023.117909
Utar, Z., Majid, M. I. A., Adenan, M. I., Jamil, M. F. A., & Lan, T. M. (2011). Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E 2 production induced by lipopolysaccharide in RAW264.7 macrophage cells. Journal of Ethnopharmacology, 136(1), 75–82. https://doi.org/10.1016/j.jep.2011.04.011
Utomo, R. S., Wibowo, M. A., Nurmainah, N., & Burhansyah, R. (2022). Local culture of Kratom (Mitragyna speciosa) consumption in Kapuas Hulu district. AIP Conference Proceedings, 2563(1), 050026. https://doi.org/10.1063/5.0104736
Veeramohan, R., Azizan, K. A., Aizat, W. M., Goh, H. H., Mansor, S. M., Yusof, N. S. M., Baharum, S. N., & Ng, C. L. (2018). Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS. Data in Brief, 18, 1212–1216. https://doi.org/10.1016/j.dib.2018.04.001
Veeramohan, R., Zamani, A. I., Azizan, K. A., Goh, H. H., Aizat, W. M., Razak, M. F. A., Yusof, N. S. M., Mansor, S. M., Baharum, S. N., & Ng, C. L. (2023). Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. Leaves. PLoS ONE, 18(3), e0283147. https://doi.org/10.1371/JOURNAL.PONE.0283147
Viwatpinyo, K., Mukda, S., & Warinhomhoun, S. (2023). Effects of mitragynine on viability, proliferation, and migration of C6 rat glioma, SH-SY5Y human neuroblastoma, and HT22 immortalized mouse hippocampal neuron cell lines. Biomedicine & Pharmacotherapy, 166, 115364. https://doi.org/10.1016/j.biopha.2023.115364
Yang, S., Xu, Y., Tang, Z., Jin, S., & Yang, S. (2024). the impact of alkaline stress on plant growth and its alkaline resistance mechanisms. International Journal of Molecular Sciences, 25(24), 13719. https://doi.org/10.3390/ijms252413719
Yunusa, S., Hassan, Z., & Müller, C. P. (2023). Mitragynine inhibits hippocampus neuroplasticity and its molecular mechanism. Pharmacological Reports, 75(6), 1488–1501. https://doi.org/10.1007/s43440-023-00541-w
Zailan, N. F. Z., Sarchio, S. N. E., & Hassan, M. (2022). Evaluation of phytochemical composition, antioxidant and anti-diabetic activities of Mitragyna speciosa methanolic extract (MSME). Malaysian Journal of Medicine and Health Sciences, 18(s21), 93–100. https://doi.org/10.47836/mjmhs.18.s21.15
Zhang, M., Sharma, A., León, F., Avery, B., Kjelgren, R., McCurdy, C. R., & Pearson, B. J. (2020). Effects of nutrient fertility on growth and alkaloidal content in Mitragyna speciosa (Kratom). Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.597696
Zhang, M., Sharma, A., Leó, F., Avery, B., Kjelgren, R., Mccurdyid, C. R., & Pearsonid, B. J. (2022). Plant growth and phytoactive alkaloid synthesis in Kratom [Mitragyna speciosa (Korth.)] in response to varying radiance. https://doi.org/10.1371/journal.pone.0259326