Document Type : Original Article

Authors

1 Department of Biotechnology, Laboratory for the Protection and Valorisation of Agrobiological Resources, Faculty of Nature and Life Sciences, University of Blida 1, B.P 270 Road of Soumâa-Blida, Algeria

2 Biotechnolgy laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitie Ali Mendjeli, BP. E66, Constantine, 25100, Algeria

Abstract

Purpose: This study provides a comprehensive evaluation of four heat treatment protocols, 45°C for 30 minutes, 50°C for 25 minutes, 55°C for 20 minutes, and 60 °C for 10 minutes, for the disinfestation of Deglet Nour dates (Phoenix dactylifera L.) while ensuring postharvest quality preservation and consumer acceptability. Research Method: The effectiveness of these heat treatments was assessed in terms of larval and egg mortality, physicochemical parameters (moisture, pH), sensory quality (texture, color, flavor, aroma), and microbiological stability, with additional storage trials using passive Modified Atmosphere Packaging (pMAP) based on PET film at 10±1°C for 5 months. Findings: Higher-temperature and shorter-duration heat treatments (notably 55°C/20 min and 60°C/10 min) proved most effective for insect disinfestation, with the 55°C/20 min treatment achieving 88.40% larval mortality while preserving the sensory qualities of the dates. Most treatments led to a noticeable reduction in moisture content, potentially affecting shelf-life and texture, except for the lowest temperature protocol. The 55°C/20 min treatment offered the best pH stability, which is key for preventing enzymatic and microbial degradation. When combined with passive Modified Atmosphere Packaging (pMAP) using PET film, this protocol ensured long-term preservation by maintaining both the physical quality and microbiological safety of the dates during cold storage. Research limitations: Further research could explore its applicability to other date varieties and dried fruits under different storage conditions. Originality/Value: This method provides a non-chemical, scientifically validated disinfestation solution, reducing reliance on fumigants and pesticides while ensuring product safety and marketability.

Keywords

Main Subjects

Aadil, R. M., Zeng, X. A., Han, Z., Benjakul, S. (2021). Effects of drying methods on the physicochemical and functional properties of date powders. Food and Bioproducts Processing, 130, 223-231. https://doi.org/10.1016/j.fbp.2021.04.005
Abdelkarim, D. O., Ahmed, K. A., Younis, M., Yehia, H. M., El-Abedein, A. I. Z., Alhamdan, A., & Ahmed, I. A. M. (2022). Optimization of infrared postharvest treatment of Barhi dates using response surface methodology (RSM). Horticulturae8(4), 342. https://doi.org/10.3390/horticulturae8040342
Addinsoft. (2022). XLstat: Statistical software for Excel. https://www.xlstat.com
Adeyeye, S. A. O. (2022). Supercritical drying of food products: An insightful review. Journal of Food Engineering, 343, 111375. https://doi.org/10.1016/j.jfoodeng.2022.111375
Al Jawally, E.A.K. (2010). Microbiological analysis of date palm fruit sold in Abu Dhabi emirate. Acta Hort, 882,1209-1212. https://doi.org/10.17660/ActaHortic.2010.882.138
Alfaifi, B., Tang, J., Rasco, B., & Sablani, S. (2016). Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science & Emerging Technologies, 37, 125-137. https://doi.org/10.1016/j.ifset.2016.08.012
Alhamdan, A., Hassan, B., Alkahtani, H., Abdelkarim, D., & Younis, M. (2018). Freezing of fresh Barhi dates for quality preservation during frozen storage. Saudi Journal of Biological Sciences, 25(8), 1552–1561. https://doi.org/10.1016/j.sjbs.2016.02.003
Ali, A. A. S., & Hama, N. N. (2016). Integrated management for major date palm pests in Iraq. Emirates Journal of Food and Agriculture, 28(1), 24-33. https://doi.org/10.9755/ejfa.2016-01-032
Al‑Mutarrafi, M., Thabet Elsharawy, N., Al‑Ayafi, A., Almatrafi, A., & Abdelkader, H. (2019). Molecular identification of fungi associated with soft dates (Phoenix dactylifera L.) in Saudi Arabia. Advancement in Medicinal Plant Research, 7(4), 97-106. https://doi.org/10.5897/AJMR2019.9073
Alqahtani, N. K., Ali, S. A., & Alnemr, T. M. (2025). Quality preservation of date palm (Phoenix dactylifera L.) fruits at the Khalal stage: A review on current challenges, preservation methods, and future trends. Frontiers in Sustainable Food Systems, 9, 1558985. https://doi.org/10.3389/fsufs.2025.1558985
AOAC. (2012). Official Methods of Analysis of AOAC International (19th ed.).
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry (4th ed.). Berlin: Springer. https://doi.org/10.1007/978-3-540-69934-7
Benalla, H., Boudhrioua, N., & Rejeb, M. N. (2019). Effects of heat treatments on the quality and disinfestation of date palm fruit. Journal of Stored Products Research, 84, 101535. https://doi.org/10.1016/j.jspr.2016.03.001
Ben‑Amor, R., De Miguel‑Gómez, M. D., Martínez‑Sánchez, A., & Aguayo, E. (2016). Effect of hot air on Deglet Noor palm date quality parameters and on Ectomyelois ceratoniae. Journal of Stored Products Research, 68, 1-8. https://doi.org/10.1016/j.jspr.2016.03.001
Alhamdan, A. M., Al Juhaimi, F. Y., Alamri, Y. A., et al. (2024). Determination of changes in bioactive components, antioxidant capacity, phenolic components and mineral values of date fruits stored in different packages and temperatures for six months. Food Measurement and Characterization, 18, 4571-4591. https://doi.org/10.1007/s11694-024-02515-9
Cherif, S., Le Bourvellec, C., Sylvie, B. & Benabda, J. (2021). Effect of storage conditions on ‘Deglet Nour’ date palm fruit organoleptic and nutritional quality. LWT – Food Science and Technology, 137, 110343. https://doi.org/10.1016/j.lwt.2020.110343
da Cruz Cabral, L., Fernandez Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1-14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026
Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1628. https://doi.org/10.3390/foods9111628
El Arem, A., Flamini, G.E., Saafi, B., Issaoui, M., Zayene, N., Ali, F., Mohamed, H., Helal, A.N., Achour, L. (2011). Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chemistry, 127, 1744-1754. http://doi: 10.1016/j.foodchem.2011.02.051
El‑Halawany, A., & Emam, M. M. (2022). Hot water treatment improves date drying and maintains phytochemicals and fruit quality characteristics of date palm (Phoenix dactylifera L.). Foods, 12(12), 2405. https://doi.org/10.3390/foods12122405
Elhoumaizi, M. A., Jdaini, K., Alla, F., & Parmar, A. (2023). Variations in physicochemical and microbiological characteristics of ‘Mejhoul’ dates (Phoenix dactylifera L.) from Morocco and other countries. Journal of the Saudi Society of Agricultural Sciences, 22(5), 318-326. https://doi.org/10.1016/j.jssas.2023.02.003
El-Ramady, H. R., Domokos-Szabolcsy, É., Abdalla, N. A., Taha, H. S., & Fári, M. (2015). Postharvest management of fruits and vegetables storage. In Sustainable agriculture reviews (Lichtfouse, E. ed.), vol. 15. Springer, Cham, 65-152. https://doi.org/10.1007/978-3-319-09132-7_2
El-Shafie, H. A. F., Abdel-Banat, B. M. A., Mohammed, M. E. A., & Al-Hajhoj, M. R. (2019). Monitoring tools and sampling methods for major date palm pests. CABI Reviews, 14(022). https://doi.org/10.1079/PAVSNNR201914022
Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. Processes, 11(2), 590. https://doi.org/10.3390/pr11020590
Fields, P. G., & White, N. D. G. (2002). Alternatives to methyl bromide treatments for stored‑product and quarantine insects. Annual Review of Entomology, 47, 331-359. https://doi.org/10.1146/annurev.ento.47.091201.145217
Finkelman, S., Navarro, S., Rindner, M., & Dias, R. (2006). Use of heat for disinfestation and control of insects in dates: Laboratory and field trials. Phytoparasitica, 34(1), 37-48. https://doi.org/10.1007/BF02981337
Gherbawy, Y. A., Elhariry, H. M., & Bahobial, A. A. (2012). Mycobiota and mycotoxins (aflatoxins and ochratoxin) associated with some Saudi date palm fruits. Foodborne Pathogens and Disease, 9(6), 561–567. https://doi.org/10.1089/fpd.2011.1085
Goktaş, H. (2023). Effect of different drying techniques on the bioactive, color, antibacterial and sensory features of date plum fruits (Diospyros lotus L.). Gıda, 48(6), 1254-1263. https://doi.org/10.15237/gida.GD23105
Greiby, I. E., & Fennir, M. A. (2023). Postharvest handling of dates. In Date Palm (Johnson, D. V., Al-Khayri, J. M., & Jain, S. M. eds.). CABI International, Wallingford, UK, 454-485. https://doi.org/10.1079/9781800620209.0014
Hannachi, N. (1998). Morphological characterization of date palm varieties. Acta Horticulturae, 480, 237-245.
Hasnaoui, A., Elhoumaizi, M. A., Asehraou, A., Sindic, M., Deroanne, C., & Hakkou, A. (2010). Chemical composition and microbial quality of dates grown in Figuig Oasis of Morocco. International Journal of Agriculture and Biology, 12(3), 311-314. http://www.fspublishers.org/.../28.pdf
Hazbavi, I., Khoshtaghaza, M.H., Mostaan, A. & Banakar, A. (2015a). Effect of postharvest hot‑water and heat treatment on quality of date palm (cv. Stamaran). Journal of the Saudi Society of Agricultural Sciences, 14(2), 153-159. http://doi:10.1016/j.jssas.2013.10.003
Hazbavi, E., Khoshtaghaza, M. H., Mostaan, A., & Banakar, A. (2015b). Effect of storage duration on some physical properties of date palm (cv. Stamaran). Journal of the Saudi Society of Agricultural Sciences, 14, 140-146. https://doi.org/10.1016/j.jssas.2013.10.001
Hossain, M. S., Sarkar, B. C., Hossain, M. M., Minn, M. Y., Rajotte, E. G., Muniappan, R., & O’Rourke, M. E. (2019). Comparison of biorational management approaches against mango fruit fly (Bactrocera dorsalis Hendel) in Bangladesh. Crop Protection, 135, 104807. https://doi.org/10.1016/j.cropro.2019.05.001
Hoogerwerf, S. W., Kets, E. P. W., & Dijksterhuis, J. (2002). High‐oxygen and high‐carbon dioxide containing atmospheres inhibit growth of food associated moulds. Letters in Applied Microbiology, 35(5), 419-422. https://doi.org/10.1046/j.1472-765x.2002.01211.x
Huang, Y., Xiao, D., & Burton Freeman, B. M. (2016). Chemical changes of bioactive phytochemicals during thermal processing. In Reference module in food science (Smith, J. ed.). Elsevier, 1-12. https://doi.org/10.1016/B978-0-08-100596-5.03055-9
IPGRI. (2005). Descriptors for Date Palm (Phoenix dactylifera L.). International Plant Genetic Resources Institute.
Jaiswal, A. K. (2016). Food processing technologies: Impact on product attributes (1st ed.). CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781315372365
Kaur, N., & Ahmed, Z. F. R. (2022). Synergistic effect of preharvest treatments on storability of date palm fruit (Phoenix dactylifera L. ‘Khenizi’). Acta Horticulturae, 1336, 173-180. https://doi.org/10.17660/ActaHortic.2022.1336.23
Khan, I. H., Javaid, A., Al-Taie, A. H., et al. (2020). Use of Neem leaves as soil amendment for the control of collar rot disease of chickpea. Egyptian Journal of Biological Pest Control, 30, 98. https://doi.org/10.1186/s41938-020-00299-w
Krishnan, N., Patel, B., Palfrey, W., Isache, C. (2020). Rapidly progressive necrotizing cellulitis secondary to Candida tropicalis infection in an immunocompromised host. ID Cases, 19, e00691. https://doi.org/10.1016/j.idcr.2019.e00691
Kubo, M. T. K., Baicu, A., Erdogdu, F., Poças, M. F., Silva, C. L. M., Simpson, R., Vitali, A. A., & Augusto, P. E. D. (2021). Thermal processing of food: Challenges, innovations and opportunities. A position paper. Food Reviews International, 39(6), 3344-3369. https://doi.org/10.1080/87559129.2021.2012789
Larmond, E. (1977). Laboratory Methods for Sensory Evaluation of Food. Food Research Institute.
Li, J., Hussain, I., Azam, M., et al. (2023). Hot water treatment improves date drying and maintains phytochemicals and fruit quality characteristics of date palm (Phoenix dactylifera). Foods, 12(12), 2405. https://doi.org/10.3390/foods12122405
Marouf Aribi, M., Khali, M. (2020). Study the effect of postharvest heat treatment on infestation rate of fruit date palm (Phoenix dactylifera L.) cultivars grown in Algeria. J Nut Sci Heal Diet 1(1), 37-40. http://doi:10.47890/JNSHD/2020/MAMohamed/10243804
Mohammed, M., Sallam, A., Alqahtani, N., & Munir, M. (2021). The combined effects of precision‑controlled temperature and relative humidity on artificial ripening and quality of date fruit. Foods, 10(11), 2636. https://doi.org/10.3390/foods10112636
Morgan, K., Benkeblia, N. (2017). Effects of modified atmosphere packaging (MAP) on microbiological and sensory quality of ackee fruit arils (Blighia sapida Koenig) stored under refrigerated regimes. Packaging Research, 2, 12-21. https://doi: 10.1515/pacres-2017-0002
Mrabet, A., Rejili, M., Lachiheb, B., Toivonen, P., Chaira, N., Ferchichi, A. (2008). Microbiological and chemical characterisations of organic and conventional date pastes (Phoenix dactylifera L.) from Tunisia. Ann. Microbiol, 58 (3), 453-459. https://doi.org/10.1007/BF03175543
Piombo, E., Abdelfattah, A., Danino, Y., Salim, S., Feygenberg, O., Spadaro, D., Wisniewski, M., & Droby, S. (2020). Characterizing the fungal microbiome in date (Phoenix dactylifera) fruit pulp and peel from early development to harvest. Microorganisms, 8(5), 641. https://doi.org/10.3390/microorganisms8050641
Rafaeli, A., Kostukovsky, M. & Carmeli, D. (2006). Successful disinfestations of sap‑beetle contaminations from organically grown dates using heat treatment: A case study. Phytoparasitica, 34, 204-212. http://doi:10.1007/BF02981321
Rambabu, K., Bharath, G., Hai, A., Banat, F., Hasan, S. W., Taher, H., & Mohd Zaid, H. F. (2020). Nutritional quality and physico-chemical characteristics of selected date fruit varieties of the United Arab Emirates. Processes8(3), 256. https://doi.org/10.3390/pr8030256
Sarraf, M., Jemni, M., Kahramanoğlu, I., Artés, F., Shahkoomahally, S., Namsi, A., Mohammadi, M., & Rastogi, A. (2021). Commercial techniques for preserving date palm (Phoenix dactylifera L.) fruit quality and safety: A review. Saudi Journal of Biological Sciences, 28(8), 4408-4420. https://doi.org/10.1016/j.sjbs.2021.04.035
Siddiq, M., & Greiby, I. (2013). Overview of date fruit production, postharvest handling, processing, and nutrition. In Dates: Postharvest science, processing technology and health benefits (Siddiq, M., Aleid, S. M., & Kader, A. A. eds.). Wiley-Blackwell, Oxford, UK, 1-28. https://doi.org/10.1002/9781118292419.ch1
Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N. F. A., Okazaki, M. M., & Gomes, R. A. R. (2018). Microbiological examination methods of food and water: A laboratory manual (2nd ed.). CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781315165011
Stratford, M. (2006). Food and beverage spoilage yeasts. In Yeasts in food and beverages (Querol, A., & Fleet, G. eds.). Springer, Berlin, Heidelberg, 335-379. https://doi.org/10.1007/978-3-540-28398-0_11
Tang, J., Wang, S., Mitcham, E. J., & Lurie, S. (Eds.). (2007). Heat treatments for postharvest pest control: Theory and practice. CABI, Wallingford, UK. https://doi.org/10.1079/9781845932527.0000
Tournas, V. H., Heeres, J., & Burgess, L. (2006). Moulds and yeasts in fruit salads and fruit juices. Food Microbiology, 23(7), 684-688. https://doi.org/10.1016/j.fm.2006.01.003
Tryfinopoulou, P., Chourdaki, A., Nychas, G. J. E., & Panagou, E. Z. (2020). Competitive yeast action against Aspergillus carbonarius growth and ochratoxin A production. International Journal of Food Microbiology, 317, 108460. https://doi.org/10.1016/j.ijfoodmicro.2019.108460
UPOV. (2016). Guidelines for the conduct of tests for distinctness, uniformity and stability – Date Palm (Phoenix dactylifera L.). International Union for the Protection of New Varieties of Plants. Retrieved from https://www.upov.int/edocs/mdocs/upov/en/twf_47/tg_phoen_dac_proj_1.pdf
Wills, R., & Golding, J. (2016). Postharvest: An introduction to the physiology and handling of fruit and vegetables. UNSW Press, Sydney, Australia. https://doi.org/10.1079/9781786391483.0000
Wohner, W., Wikström, F., Hebrok, C., & Elmadfa, I. (2025). Food wastage along the global food supply chain and the impact of food packaging. Journal of Consumer Protection and Food Safety, 20, 5-17. https://doi.org/10.1007/s00003-024-01539-z
Yahia, E. M., Lobo, M. G., & Kader, A. A. (2013). Harvesting and postharvest technology of dates. In Quality in fruits and vegetables (Sarig, Y. ed.). Wiley-Blackwell, Oxford, UK, 85-120. https://doi.org/10.1002/9781118292419.ch5
Zinhoum, R.A., Negm, A.A.K.H., El-Shafei, W.K.M. (2025). Vapour heat as a potential means of controlling insects in stored dates. Bulletin of Entomological Research, 115(1), 48-55. https://doi.10.1017/S0007485324000877