Document Type : Original Article

Authors

Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya - 30662, South Sumatra, Indonesia

Abstract

Purpose: Oxidative stress is a condition caused by an imbalance between free radicals and the body's antioxidant defense system. Antioxidants are substances that reduce or inhibit the formation of free radicals. This study aimed to evaluate the effects of different extraction temperatures on the polyphenol content of nipa palm (Nypa fruticans) fruit husk and to determine its antioxidant activity. Research method: The nipa palm fruit husk was extracted using different temperatures (30°C, 45°C, and 60°C) and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl method. The data were presented as mean ± standard deviation and analyzed by one-way analysis of variance (one-way ANOVA) followed by Duncan multiple comparison tests. Findings: The results showed that an extraction temperature of 60°C produced the highest total phenolic (44.50 mg Gallic acid equivalent per g of sample), flavonoid (8.75 mg Quercetin equivalent per g of sample), and tannin (50.30 mg Tannic acid equivalent per g of sample). Fourier transform infrared analysis detected hydroxyl groups, indicating the presence of polyphenol compounds in the nipa palm fruit husk extract. Furthermore, the extraction temperature of 60°C exhibited the highest radical scavenging activity (52.79%) compared to other temperatures (30°C and 45°C). These findings suggest that nipa palm fruit husk extract can serve as a natural antioxidant and has potential applications as a pharmaceutical agent. Research limitations: There were no limitations identified. Originality/Value: This study is the first to report the effect of temperature on the extraction of polyphenol content from nipa fruit husks. It also highlights the potential of nipa fruit husk extract as a natural source of antioxidant agents.

Keywords

Main Subjects

Adebiyi, O. E., Olayemi, F. O., Ning-Hua, T., & Guang-Zhi, Z. (2017). In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef University Journal of Basic and Applied Sciences, 6(1), 10-14. http://dx.doi.org/10.1016/j.bjbas.2016.12.003.
Andrés, C. M. C., Lastra J. M. P. D. L., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2023). Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Process, 11(9), 2771. http://dx.doi.org/10.3390/pr11092771.
Antony, A. & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 2107. http://dx.doi.org/10.3390/app12042107.
Arina, M. Z. I., & Harisun, Y. (2019). Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatalysis and Agricultural Biotechnology, 19, 101104. http://dx.doi.org/10.1016/j.bcab.2019.101104.
Astuti, M. D., Nisa, K., & Mustikasari, K. (2020). Identification of chemical compounds from nipah (Nypa fruticans Wurmb.) endosperm. BIO Web of Conferences, 20, 03002. https://doi.org/10.1051/bioconf/20202003002.
Balaky, H.H., Khalİd, K., Hasan, A., Tahir, S., Ubur, S., & Khedir, A (2021). Estimation of total tannin and total phenolic content in plant (Crataegus azarolus L.) by orbital shaker technique. International Journal of Agriculture, Environment and Food Sciences, 5(1), 1-6 (2021). https://doi.org/10.31015/jaefs.2021.1.1.
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C, M. (2022). Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326.
Bhateja, P. K., Kajal, A., & Singh, R. (2020). Amelioration of diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using Acacia tortilis polysaccharide in streptozotocin-nicotinamide induced diabetes in rats. Journal of Ayurveda and Integrative Medicine, 11(4), 405-413. https://doi.org/10.1016/j.jaim.2019.06.003.
Chandimali, N., Bak, S. G., Park, E. H., Lim, H.-J., Won, Y.-S., Kim, E.-K., Park, S.-I., & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discovery, 11, 19. https://doi.org/10.1038/s41420-024-02278-8.
Duarah, P., Joardar, S., Debnath, B., & Purkait, M. K. (2024). Optimized extraction of polyphenols from tea factory waste and cost-effective drying methods for sustainable utilization. Bioresource Technology Reports, 26, 101833. https://doi.org/10.1016/j.biteb.2024.101833.
Frempong, F. T., Boadi, N. O., & Badu, M. (2021). Optimization of extraction conditions for polyphenols from the stem bark of Funtumia elastica (Funtum) utilizing response surface methodology. AAS Open Research, 4, 46. http://dx.doi.org/10.12688/aasopenres.13284.2.
Hermanto, H., Mukti, R. C., & Pangawikan, A. D. (2020). Nipah (Nypa fruticans Wurmb.) fruit as a potential natural antioxidant source. IOP Conference Series: Earth and Environmental Science, 443(1), 012096. http://dx.doi.org/10.1088/1755-1315/443/1/012096.
Herpandi, Lestari, S. D., Bastian, & Sudirman, S. (2021). Antioxidant activity of the fractions from water lettuce (Pistia stratiotes) extract. Food Research, 5(2), 451-455. http://dx.doi.org/10.26656/fr.2017.5(2).578.
Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., & Li, B. (2024). Classification and antioxidant assays of polyphenols: A review. Journal of Future Foods, 4(3), 193-204. http://dx.doi.org/10.1016/j.jfutfo.2023.07.002.
Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., & Wang, S. (2019). Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Industrial Crops and Products, 140, 111620. http://dx.doi.org/10.1016/j.indcrop.2019.111620.
Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux extraction optimization and antioxidant activity of phenolic compounds from Pleioblastus amarus (Keng) shell. Molecules, 27, 362. https://doi.org/10.3390/molecules27020362.
Maimulyanti, A., Prihadi, A. R., Mellisani, B., Nurhidayati, I., Putri, F. A. R., Puspita, F., & Widarsih. R. W. (2023). Green extraction technique to separate tannin from coffee husk waste using natural deep eutectic solvent (Nades). RASAYAN Journal of Chemistry, 16(3), 2002-2008. http://dx.doi.org/10.31788/rjc.2023.1638334.
Mokoroane, K. T., Pillai, M. K., & Magama, S. (2020). 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of extracts from Aloiampelos striatula. Food Research, 4(6), 2062-2066. http://dx.doi.org/10.26656/fr.2017.4(6).241.
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16, 48. https://doi.org/10.1186/s13065-022-00841-x.
Muala, W. C. B., Desobgo, Z. S. C. D., & Jong, N. E. (2021). Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract. Heliyon, 7, e06744. https://doi.org/10.1016/j.heliyon.2021.e06744.
Mukherjee, S., Chopra, H., Goyal, R., Jin, S., Dong, Z., Das, T., & Bhattacharya, T. (2024). Therapeutic effect of targeted antioxidant natural products. Discover Nano, 19, 144. https://doi.org/10.1186/s11671-024-04100-x.
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019) How to read and interpret FT-IR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118. http://dx.doi.org/10.17509/ijost.v4i1.15806.
Rad, M. S., Kumar, N. V. A., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P. V. T., Azzini, E., Peluso, I., Mishra, A. P., Nigam, M., El-Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. http://dx.doi.org/10.3389/fphys.2020.00694.
Rebocho, S., Mano, F., Cassel, E., Anacleto, B., Bronze, M. D. R., Paiva, A., & Duarte, A. R. C. (2022). Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/hydrophilic nades. Current Research in Food Science, 5, 571-580. http://dx.doi.org/10.1016/j.crfs.2022.03.004.
Sathishkumar, T., Baskar, R., Shanmugam, S., Rajasekaran, P., Sadasivam, S., & Manikandan, V. (2008). Optimization of flavonoids extraction from the leaves of Tabernaemontana heyneana Wall. using L16 orthogonal design. Nature and Science, 6(3), 10-21.
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932.
Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture & Environment, 1(2), 42-47.
Singh, M., Thrimawithana, T., Shuklaa, R., & Adhikari, B. (2021) Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from Hibiscus sabdariffa. Future Foods, 4, 100087. https://doi.org/10.1016/j.fufo.2021.100087.
Spigno, G., Tramelli, L., & Faveri, D. M. D. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208. http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021.
Sudirman, S., Baehaki, A., Fathullah, F., & Janna, M. (2023). Effects of extraction temperature on polyphenol compounds and antioxidant activity of golden bladderwort (Utricularia aurea). Agritech, 43(4), 308-313. http://dx.doi.org/10.22146/agritech.75223.
Sudirman, S., Herpandi, Rinto, Lestari, S., Harma, M., & Aprilia, C. (2024a). Effects of extraction temperature on bioactive compounds and antioxidant activity of yellow velvetleaf (Limnocharis flava) and water lettuce (Pistia stratiotes) leaf extract. Food Research, 8(1), 136-139. http://dx.doi.org/10.26656/fr.2017.8(1).113.
Sudirman, S., Herpandi, Safitri, E., Apriani, E. F., & Taqwa, F. H. (2022). Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Research, 6(4), 205-210. http://dx.doi.org/10.26656/fr.2017.6(4).484.
Sudirman, S., Wardana, A. K., Herpandi, Widiastuti, I., Sari, D. I., & Janna, M. (2024b). Antioxidant activity of polyphenol compounds extracted from nipa palm (Nypa fruticans) fruit husk with different ethanol concentrations. International Journal of Secondary Metabolite, 11(2), 355-363. https://doi.org/10.21448/ijsm.1360736.
Sulaiman, I. S. C., Basri, M., Masoumi, H. R. F., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 54. https://doi.org/10.1186/s13065-017-0285-1.
Teh, S. S., & Birch, E. J. (2014). Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrasonics Sonochemistry, 21(1), 346-353. https://doi.org/10.1016/j.ultsonch.2013.08.002.
Wilczyńska, A. & Żak, N. (2024). Polyphenols as the main compounds influencing the antioxidant effect of honey—A Review. International Journal of Molecular Sciences, 15, 10606. https://doi.org/10.3390/ijms251910606.
Wongsa, P., Phatikulrungsun, P., & Prathumthong, S. (2022). FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Scientific Reports, 12, 663. https://doi.org/10.1038/s41598-022-10669-z.
Xiang, Y., Liu, Z., Liu, Y., Dong, B., Yang, C., & Li, H. (2024). Ultrasound-assisted extraction, optimization, and purification of total flavonoids from Daphne genkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities. Ultrasonics Sonochemistry, 111, 107079. https://doi.org/10.1016/j.ultsonch.2024.107079.