Adebiyi, O. E., Olayemi, F. O., Ning-Hua, T., & Guang-Zhi, Z. (2017).
In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of
Grewia carpinifolia.
Beni-Suef University Journal of Basic and Applied Sciences,
6(1), 10-14.
http://dx.doi.org/10.1016/j.bjbas.2016.12.003.
Andrés, C. M. C., Lastra J. M. P. D. L., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2023). Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism.
Process,
11(9), 2771.
http://dx.doi.org/10.3390/pr11092771.
Arina, M. Z. I., & Harisun, Y. (2019). Effect of extraction temperatures on tannin content and antioxidant activity of
Quercus infectoria (Manjakani).
Biocatalysis and Agricultural Biotechnology,
19, 101104.
http://dx.doi.org/10.1016/j.bcab.2019.101104.
Balaky, H.H., Khalİd, K., Hasan, A., Tahir, S., Ubur, S., & Khedir, A (2021). Estimation of total tannin and total phenolic content in plant (
Crataegus azarolus L.) by orbital shaker technique.
International Journal of Agriculture, Environment and Food Sciences,
5(1), 1-6 (2021).
https://doi.org/10.31015/jaefs.2021.1.1.
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C, M. (2022). Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of
Ficus religiosa.
Molecules,
27(4), 1326.
https://doi.org/10.3390/molecules27041326.
Bhateja, P. K., Kajal, A., & Singh, R. (2020). Amelioration of diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using
Acacia tortilis polysaccharide in streptozotocin-nicotinamide induced diabetes in rats.
Journal of Ayurveda and Integrative Medicine,
11(4), 405-413.
https://doi.org/10.1016/j.jaim.2019.06.003.
Chandimali, N., Bak, S. G., Park, E. H., Lim, H.-J., Won, Y.-S., Kim, E.-K., Park, S.-I., & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discovery,
11, 19.
https://doi.org/10.1038/s41420-024-02278-8.
Duarah, P., Joardar, S., Debnath, B., & Purkait, M. K. (2024). Optimized extraction of polyphenols from tea factory waste and cost-effective drying methods for sustainable utilization.
Bioresource Technology Reports,
26, 101833.
https://doi.org/10.1016/j.biteb.2024.101833.
Frempong, F. T., Boadi, N. O., & Badu, M. (2021). Optimization of extraction conditions for polyphenols from the stem bark of
Funtumia elastica (Funtum) utilizing response surface methodology.
AAS Open Research,
4, 46.
http://dx.doi.org/10.12688/aasopenres.13284.2.
Hermanto, H., Mukti, R. C., & Pangawikan, A. D. (2020). Nipah (
Nypa fruticans Wurmb.) fruit as a potential natural antioxidant source.
IOP Conference Series: Earth and Environmental Science,
443(1), 012096.
http://dx.doi.org/10.1088/1755-1315/443/1/012096.
Herpandi, Lestari, S. D., Bastian, & Sudirman, S. (2021). Antioxidant activity of the fractions from water lettuce (
Pistia stratiotes) extract.
Food Research,
5(2), 451-455.
http://dx.doi.org/10.26656/fr.2017.5(2).578.
Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., & Li, B. (2024). Classification and antioxidant assays of polyphenols: A review.
Journal of Future Foods,
4(3), 193-204.
http://dx.doi.org/10.1016/j.jfutfo.2023.07.002.
Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., & Wang, S. (2019). Enhanced extraction of natural pigments from
Curcuma longa L. using natural deep eutectic solvents.
Industrial Crops and Products,
140, 111620.
http://dx.doi.org/10.1016/j.indcrop.2019.111620.
Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux extraction optimization and antioxidant activity of phenolic compounds from
Pleioblastus amarus (Keng) shell
. Molecules, 27, 362.
https://doi.org/10.3390/molecules27020362.
Maimulyanti, A., Prihadi, A. R., Mellisani, B., Nurhidayati, I., Putri, F. A. R., Puspita, F., & Widarsih. R. W. (2023). Green extraction technique to separate tannin from coffee husk waste using natural deep eutectic solvent (Nades).
RASAYAN Journal of Chemistry,
16(3), 2002-2008.
http://dx.doi.org/10.31788/rjc.2023.1638334.
Mokoroane, K. T., Pillai, M. K., & Magama, S. (2020). 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of extracts from
Aloiampelos striatula.
Food Research, 4(6), 2062-2066.
http://dx.doi.org/10.26656/fr.2017.4(6).241.
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of
Commiphora mollis (Oliv.) Engl. resin.
BMC Chemistry,
16, 48.
https://doi.org/10.1186/s13065-022-00841-x.
Muala, W. C. B., Desobgo, Z. S. C. D., & Jong, N. E. (2021). Optimization of extraction conditions of phenolic compounds from
Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract.
Heliyon,
7, e06744.
https://doi.org/10.1016/j.heliyon.2021.e06744.
Mukherjee, S., Chopra, H., Goyal, R., Jin, S., Dong, Z., Das, T., & Bhattacharya, T. (2024). Therapeutic effect of targeted antioxidant natural products.
Discover Nano,
19, 144.
https://doi.org/10.1186/s11671-024-04100-x.
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019) How to read and interpret FT-IR spectroscope of organic material.
Indonesian Journal of Science and Technology,
4(1), 97-118.
http://dx.doi.org/10.17509/ijost.v4i1.15806.
Rad, M. S., Kumar, N. V. A., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Fokou, P. V. T., Azzini, E., Peluso, I., Mishra, A. P., Nigam, M., El-Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.
Frontiers in Physiology,
11, 694.
http://dx.doi.org/10.3389/fphys.2020.00694.
Rebocho, S., Mano, F., Cassel, E., Anacleto, B., Bronze, M. D. R., Paiva, A., & Duarte, A. R. C. (2022). Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/hydrophilic nades.
Current Research in Food Science,
5, 571-580.
http://dx.doi.org/10.1016/j.crfs.2022.03.004.
Sathishkumar, T., Baskar, R., Shanmugam, S., Rajasekaran, P., Sadasivam, S., & Manikandan, V. (2008). Optimization of flavonoids extraction from the leaves of Tabernaemontana heyneana Wall. using L16 orthogonal design. Nature and Science, 6(3), 10-21.
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation.
LWT, 150, 111932.
https://doi.org/10.1016/j.lwt.2021.111932.
Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture & Environment, 1(2), 42-47.
Singh, M., Thrimawithana, T., Shuklaa, R., & Adhikari, B. (2021) Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from
Hibiscus sabdariffa. Future Foods,
4, 100087.
https://doi.org/10.1016/j.fufo.2021.100087.
Spigno, G., Tramelli, L., & Faveri, D. M. D. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics.
Journal of Food Engineering,
81(1), 200-208.
http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021.
Sudirman, S., Baehaki, A., Fathullah, F., & Janna, M. (2023). Effects of extraction temperature on polyphenol compounds and antioxidant activity of golden bladderwort (
Utricularia aurea).
Agritech,
43(4), 308-313.
http://dx.doi.org/10.22146/agritech.75223.
Sudirman, S., Herpandi, Rinto, Lestari, S., Harma, M., & Aprilia, C. (2024a). Effects of extraction temperature on bioactive compounds and antioxidant activity of yellow velvetleaf (
Limnocharis flava) and water lettuce (
Pistia stratiotes) leaf extract.
Food Research,
8(1), 136-139.
http://dx.doi.org/10.26656/fr.2017.8(1).113.
Sudirman, S., Herpandi, Safitri, E., Apriani, E. F., & Taqwa, F. H. (2022). Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (
Pistia stratiotes) leave extracts.
Food Research,
6(4), 205-210.
http://dx.doi.org/10.26656/fr.2017.6(4).484.
Sudirman, S., Wardana, A. K., Herpandi, Widiastuti, I., Sari, D. I., & Janna, M. (2024b). Antioxidant activity of polyphenol compounds extracted from nipa palm (
Nypa fruticans) fruit husk with different ethanol concentrations.
International Journal of Secondary Metabolite,
11(2), 355-363.
https://doi.org/10.21448/ijsm.1360736.
Sulaiman, I. S. C., Basri, M., Masoumi, H. R. F., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of
Clinacanthus nutans Lindau leaves by response surface methodology.
Chemistry Central Journal,
11(1), 54.
https://doi.org/10.1186/s13065-017-0285-1.
Teh, S. S., & Birch, E. J. (2014). Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes.
Ultrasonics Sonochemistry,
21(1), 346-353.
https://doi.org/10.1016/j.ultsonch.2013.08.002.
Wilczyńska, A. & Żak, N. (2024). Polyphenols as the main compounds influencing the antioxidant effect of honey—A Review.
International Journal of Molecular Sciences,
15, 10606.
https://doi.org/10.3390/ijms251910606.
Wongsa, P., Phatikulrungsun, P., & Prathumthong, S. (2022). FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions.
Scientific Reports,
12, 663.
https://doi.org/10.1038/s41598-022-10669-z.
Xiang, Y., Liu, Z., Liu, Y., Dong, B., Yang, C., & Li, H. (2024). Ultrasound-assisted extraction, optimization, and purification of total flavonoids from
Daphne genkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities.
Ultrasonics Sonochemistry,
111, 107079.
https://doi.org/10.1016/j.ultsonch.2024.107079.