Document Type : Original Article

Authors

Department of Agronomy, College of Agriculture, Shahed University, Tehran, Iran

Abstract

Purpose: This study investigated the effects of phosphorus, potassium, and humic acid fertilizers on growth, yield, and physiological traits of chicory under Arak’s climatic conditions using a factorial experiment. Research Method: The experiment was conducted in a randomized complete block design with three replications. Experimental factors included levels of phosphorus fertilizer (0, 8 and 12 kgha-1), potassium fertilizer (0, 10 and 15 kgha-1), and humic acid (0, 0.5 and 2 kgha-1). Findings The results showed that the highest Leaf Area Index was observed in the treatment of 12kg/ha phosphorus+10 kg/ha potassium sulfate+2 kg/ha humic acid, with a mean of 2.9. The highest number of flowers and the highest total chlorophyll content were obtained in 12 kg/ha phosphorus + 10 kg/ha potassium sulfate + 0.5 kg/ha humic acid treatment with averages of 49.11 per plant and 39.5µg/g FW respectively. The highest flower yield was in 10 kg/ha potassium sulfate treatment with an average of 330.6 kgha-1. The highest content of free proline was obtained in 8 kg/ha phosphorus+15kg/ha potassium sulfate+2 kg/ha humic acid treatment with 0.97μmol/g FW. Combined phosphorus, potassium, and humic acid application significantly improved chicory growth, yield, and physiology, increasing leaf area index, flower number/yield, shoot yield, biomass, and chlorophyll content, while decreasing free proline. Research limitations: No significant limitations were identified in this study. Originality/Value: To maximize chicory growth and yield in the specific climatic conditions of this study, a balanced fertilizer application is crucial, as excessive fertilization can be harmful. This study suggests a combination of 8 kg/ha of superphosphate, 10kg/ha of potassium sulfate, and 0.5 kg/ha of humic acid powder. Future research should focus on understanding how these nutrients affect chicory at a mechanistic level and on evaluating the long-term consequences of various fertilization programs for soil fertility and environmental health.

Keywords

Main Subjects

Adediran, J. A., Taiwo, L. B., Akande, M. O., Sobulo, R. A., & Idowu, O. J. (2005). Application of organic and inorganic fertilizer for sustainable maize and cowpea yields in Nigeria. Journal of Plant Nutrition, 27(7), 1163-1181. https://doi.org/10.1081/PLN-120038542
Aghazadeh-Khalkhali, D., Mehrafarin, A., Abdossi, V., & Naghdi Badi, H. (2015). Mucilage and seed yield of psyllium (Plantago psyllium L.) in response to foliar application of nano-iron and potassium chelate fertilizer. Journal of Medicinal Plants, 14(56), 23-34. http://jmp.ir/article-1-838-fa.html
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health [Review]. Frontiers in Agronomy, 4https://doi.org/https://doi.org/10.3389/fagro.2022.848621
Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C., & Sandelius, A. S. (2003). Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett, 537(1-3), 128-132. https://doi.org/https://doi.org/10.1016/s0014-5793(03)00109-1
Anju, Javed, G., Javaid, R., & Ahmed, F. (2020). Kasni (Cichorium intybus): A unani hepatoprotective drug. Journal of Drug Delivery and Therapeutics, 10(4), 238-241. https://doi.org/10.22270/jddt.v10i4.4162
Ansarifard, I., Bozorgipour, R., Shojaei, S. H., Jamshidi, S., & Bijeh Keshavarzi, M. H. (2024). Evaluation of seed set in wheat × maize hybrids produced via chromosome elimination. Journal of Agricultural Sciences and Engineering6(3), 127-132. https://doi.org/10.48309/jase.2024.471780.1053
Asilbekova, D., Ul'chenko, N., Rakhimova, N., Nigmatullaev, A., & Glushenkova, A. I. (2005). Seed Lipids from Crotalaria alata and Guizotia abyssinica. Chemistry of Natural Compounds, 41, 596-597. https://doi.org/10.1007/s10600-005-0217-5
Bahmani, M., Shahinfard, N., Rafieian-kopaei, M., Saki, K., Shahsavari, S., Ghafourian, S., & Baharvand-Ahmadi, B. (2015). Chicory: A review on ethnobotanical effects of Cichorium intybus L. Journal of Chemical and Pharmaceutical Sciences, 8.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
Bhaskaran, N., Shukla, S., Srivastava, J. K., & Gupta, S. (2010). Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. International Journal of Molecular Medicine, 26(6), 935-940. https://doi.org/10.3892/ijmm_00000545
Bhat, J. G., & Murthy, H. N. (2008). Haploid plant regeneration from unpollinated ovule cultures of niger (Guizotia abyssinica (L. f.) Cass.). Russian Journal of Plant Physiology, 55(2), 241-245. https://doi.org/10.1134/S1021443708020118
Bijeh Keshavarzi, M. H. & Omidi, H. (2025). Optimizing bio-chemical fertilizer treatments for quantitative and qualitative traits of Artemisia annua L. using graphical analysis. Journal of Horticulture and Postharvest Research8(3), 379-396. https://doi.org/10.22077/jhpr.2024.8247.1440
Blum, A. (1988). Plant breeding for stress environments (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781351075718
Bostani, A., Mohebbi Tafreshi, A., & Bijeh Keshavarzi, M. H. (2025). Assessment of soil fertility and nutrient distribution for enhanced soil health and field management through an innovative approach. Agrosystems, Geosciences & Environment8, e70088. https://doi.org/10.1002/agg2.70088
Boveiri Dehsheikh, A., Mahmoodi Sourestani, M., Zolfaghari, M., & Enayatizamir, N. (2017). The Effect of plant growth promoting rhizobacteria, chemical fertilizer and humic acid on morpho-physiological characteristics of basil (Ocimum basilicum var. thyrsiflorum). Journal of Agricultural Science and Sustainable Production, 26(4), 129-142.
Carvalho, S. M. P., Abi-Tarabay, H., & Heuvelink, E. (2005). Temperature affects chrysanthemum flower characteristics differently during three phases of the cultivation period. The Journal of Horticultural Science and Biotechnology, 80(2), 209-216. https://doi.org/10.1080/14620316.2005.11511919
Celik, I., Ortas, I., & Kilic, S. (2004). Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78(1), 59-67. https://doi.org/https://doi.org/10.1016/j.still.2004.02.012
Chen, Y., & Aviad, T. (1990). Effects of humic substances on plant growth. In humic substances in soil and crop sciences: selected readings (pp. 161-186). https://doi.org/https://doi.org/10.2136/1990.humicsubstances.c7
Delfine, S., Tognetti, R., Desiderio, E., & Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25(2), 183-191. https://doi.org/https://doi.org/10.1051/agro:2005017
Di Cagno, R., Guidi, L., Stefani, A., & Soldatini, G. F. (1999). Effects of cadmium on growth of Helianthus annus Seedlings: physiological aspects. The New Phytologist, 144(1), 65-71. http://www.jstor.org/stable/2588276
Fathi, R., Mohebodini, M., & Chamani, E. (2018). Optimization of hairy roots induction in chicory (Cichorium intybus L.) and effects of auxin and carbon source on their growth. Iranian Journal of Horticultural Science, 49(3), 657-667. https://doi.org/10.22059/ijhs.2017.225587.1171
Fatma, M., Asgher, M., Masood, A., & Khan, N. A. (2014). Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany, 107, 55-63. https://doi.org/https://doi.org/10.1016/j.envexpbot.2014.05.008
Gorzi, A., Omidi, H., Bostani, A., & Bijeh Keshavarzi, M. H. (2024). Morphological properties of stevia (Stevia Rebaudiana Bert.) affected by foliar application of iron, zinc, and salicylic acid under drought stress. International Journal of Advanced Biological and Biomedical Research12(3), 262-272. https://doi.org/10.48309/ijabbr.2024.2021995.1487
Guo, X.-x., Liu, H.-t., & Wu, S.-b. (2019). Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of The Total Environment, 662, 501-510. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.01.137
Hajiboland, R. (2012). Effect of micronutrient deficiencies on plants stress responses. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability (pp. 283-329). Springer New York. https://doi.org/10.1007/978-1-4614-0634-1_16
Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I. S., & White, P. (2012). Functions of macronutrients. In P. Marschner (Ed.), Marschner's Mineral Nutrition of Higher Plants (Third Edition) (pp. 135-189). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384905-2.00006-6
Ihtisham, M., Fahad, S., Luo, T., Larkin, R. M., Yin, S., & Chen, L. (2018). Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Frontiers in Plant Science, 9, 487. https://doi.org/10.3389/fpls.2018.00487
Jaiswal, R., Kiprotich, J., & Kuhnert, N. (2011). Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry, 72(8), 781-790. https://doi.org/https://doi.org/10.1016/j.phytochem.2011.02.027
Jiang, M., & Zhang, J. (2002). Water stress‐induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up‐regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53(379), 2401-2410. https://doi.org/10.1093/jxb/erf090
Kadkhodaei, A. (2013). Effect of irrigation regimes on morphological, physiological, and biochemical characteristics of sesame genotypes Isfahan University of Technology]. Isfahan, Iran.
Kafi, M., & Mahdavi Damghani, A. (2000). Mechanisms of Environmental Stress Resistance in Plants. . Ferdowsi University Press.
Kamaluddin, Singh, R. M., Prasad, L. C., Abdin, M. Z., & Joshi, A. K. (2007). Combining ability analysis for grain filling duration and yield traits in spring wheat (Triticum aestivum L. em. Thell.). Genetics and Molecular Biology, 30. https://doi.org/https://doi.org/10.1590/S1415-47572007000300018
Karakurt, Y., Unlu, H., Unlu, H., & Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 59(3), 233-237. https://doi.org/10.1080/09064710802022952
Karimi, E., Tadayyon, A., & Tadayyon, M. R. (2016). The effect of humic acid on some yield characteristics and leaf proline content of safflower under different irrigation regimes. Journal of Crops Improvement, 18(3), 609-623. https://doi.org/10.22059/jci.2016.56624
Kaur, T., Brar, B. S., & Dhillon, N. S. (2008). Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutrient Cycling in Agroecosystems, 81(1), 59-69. https://doi.org/10.1007/s10705-007-9152-0
Khadempir, m. (2014). Investigation leaf area index, dry matter accumulation and allocation in two cultivars of faba bean (Vicia faba L.) affected by the distance between rows and planting date. Applied Research of Plant Ecophysiology, 1(3), 15-36. http://arpe.gonbad.ac.ir/article-1-115-en.html
Khaled, H., & Fawy, A. H. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29. https://doi.org/10.17221/4/2010-SWR
Khattab, M. M., Shaban, A. E., El-Shrief, A. H., & Mohamed, A. S. E.-D. (2014). Effect of Humic Acid and Amino Acids on Pomegranate Trees under Deficit Irrigation. II: Fruit Quality. American-Eurasian Journal of Agricultural & Environmental Sciences, 14(9), 941-948. https://doi.org/10.5829/idosi.aejaes.2014.14.09.12409
Khayyat, M., Jabbari, M., Fallahi, H.-R., & Samadzadeh, A. (2018). Effects of corm dipping in salicylic acid or potassium nitrate on growth, flowering, and quality of saffron. Journal of Horticultural Research, 26, 13-21. https://doi.org/10.2478/johr-2018-0002
Kohler, J., Caravaca, F., Carrasco, L., & Roldán, A. (2007). Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology, 35(3), 480-487. https://doi.org/https://doi.org/10.1016/j.apsoil.2006.10.006
Li, Y., Fang, F., Wei, J., Wu, X., Cui, R., Li, G., Zheng, F., & Tan, D. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Scientific Reports, 9(1), 12014. https://doi.org/10.1038/s41598-019-48620-4
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4(1), 5686. https://doi.org/10.1038/srep05686
Lizaso, J. I., Batchelor, W. D., & Westgate, M. E. (2003). A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crops Research, 80(1), 1-17. https://doi.org/https://doi.org/10.1016/S0378-4290(02)00151-X
Lynch, J., Läuchli, A., & Epstein, E. (1991). Vegetative Growth of the Common Bean in Response to Phosphorus Nutrition. Crop Science, 31(2), cropsci1991.0011183X003100020031x. https://doi.org/https://doi.org/10.2135/cropsci1991.0011183X003100020031x
Malekooti, M. J., & Homaei, M. (2004). Potassium in Iranian agriculture (1st ed.). Sana Publications.
Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces, 59(2), 141-149. https://doi.org/10.1016/j.colsurfb.2007.05.002
Mousavi, S. M. R., Omidi, H., Bijeh Keshavarzi, M. H., & Shojaei, S. H. (2025). Recommendation of the Appropriate Treatments Using Carbon Nanotubes in Drought Stress Conditions in Maize Genotypes (Zea mays L) in Preliminary Study Based on Treatment × Trait. J Plant Growth Regul. https://doi.org/10.1007/s00344-025-11631-9
Neciu, F. C., Saplacan, G., Rechitean, D., & Dragomir, N. (2017). Forage chicory (Cichorium intybus L.)-Pretability in crops and effects in ruminants feeding: Review. Animal Science and Biotechnologies, 50(1), 170-175.
Pakbaz, N., Omidi, H., & Bijeh Keshavarzi, M. H. (2024). Effect of nutri-priming on germination indices and photosynthetic pigments of quinoa (Chenopodium quinoa) seedling under drought stress. Iranian Journal of Plant Physiology, 3(14), 5129-5139. https://doi.org/10.71551/ijpp.2024.1025895
Prakash, V., Bhattacharyya, R., Selvakumar, G., Kundu, S., & Gupta, H. S. (2007). Long-term effects of fertilization on some soil properties under rainfed soybean-wheat cropping in the Indian Himalayas. Journal of Plant Nutrition and Soil Science, 170(2), 224-233. https://doi.org/https://doi.org/10.1002/jpln.200622032
Rezaei Moadab, A., Nabavi Kalat, S. M., & Sadrabadi Haghighi, R. (2014). The effect of vermicompost and biological and chemical fertilizers on growth yield and essence of basil (Ocimum basilicum L.) in the Mashhad weather conditions. Journal of Ecology Agriculture, 5(4), 350-362.
Rezaienia, N., Ramroudi, M., Galavi, M., & Forouzandeh, M. (2018). Study of agronomical characteristics, flower yield and root inulin percentage of chicory (Chicorium intybus L.) under soil fertilizers and drought stress. Journal of Plant Production Research, 24(4), 129-140. https://doi.org/10.22069/jopp.2018.12966.2168
Rezvanimoghadam, P., Naghibi, R., Ghorbani, R., & Balandari, A. (2019). Integrated management of organic fertilizers and mycorrhiza inoculation on seed yield and yield components of dwarf chicory (Cichorium pumilum Jacq.). Iranian Journal of Field Crop Science, 49(4), 1-12. https://doi.org/10.22059/ijfcs.2018.98972.653689
Ritala, A., Dong, L., Imseng, N., Seppänen-Laakso, T., Vasilev, N., van der Krol, S., Rischer, H., Maaheimo, H., Virkki, A., Brändli, J., Schillberg, S., Eibl, R., Bouwmeester, H., & Oksman-Caldentey, K. M. (2014). Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. Journal of Biotechnology, 176, 20-28. https://doi.org/10.1016/j.jbiotec.2014.01.031
Sabzevari, S., & Khazaie, H. R. (2009). The effect of foliar application with humic acid on growth, yield and yield components of wheat (Triticum aestivum L.). Journal of Agroecology, 1(2), 53-63. https://doi.org/10.22067/jag.v1i2.2686
Sajadi Nik, R., Yadavi, A., Balouchi, H. R., & Farajee, H. (2011). Effect of chemical (urea), organic (vermicompost) and biological (nitroxin) fertilizers on quantity and quality yield of sesame (Sesamum indicum L.). Journal of Agricultural Science and Sustainable Production, 21(2), 87-101. https://sustainagriculture.tabrizu.ac.ir/article_1223.html
Salardini, A. (2004). Principles of plant nutrition. University of Tehran Press.
Sangeetha, M., & Singaram, P. (2007). Effect of lignite humic acid and inorganic fertilizers on growth and yield of onion. Asian Journal of Soil Science, 2, 108-110.
Shad, M., Nawaz, H., Rehman, T., & Ikram, N. (2013). Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of Cichorium intybus L.: A comparative study. Journal of Animal and Plant Sciences, 23, 1060-1066.
Suriyan, C.-u., & Chalermpol, K. (2009). Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agricultural Sciences in China, 8(1), 51-58. https://doi.org/https://doi.org/10.1016/S1671-2927(09)60008-0
Tengo, A., & Akbari, H. (2016). Introduction to the medicinal properties of three species of the Compositae family. Third National Congress on the Path of Development of Agricultural Sciences and Natural Resources, Gorgan.
Ulukan, D. H. (2008). Effect of soil applied humic acid at different sowing times on some yield components in wheat (Triticum spp.) hybrids. International Journal of Botany, 4(2), 164-175. https://doi.org/10.3923/ijb.2008.164.175
Valadabadi, S. A., & Aliabadi Farahani, H. (2010). Effects of planting density and pattern on physiological growth indices in maize (Zea mays L.) under nitrogenous fertilizer application. Journal of Agricultural Extension and Rural Development, 2(3), 40-47. https://doi.org/https://doi.org/10.5897/JAERD.9000035
Valdrighi, M. M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., & Vallini, G. (1996). Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study. Agriculture, Ecosystems & Environment, 58(2), 133-144. https://doi.org/https://doi.org/10.1016/0167-8809(96)01031-6
Vaughan, D., & Linehan, D. J. (1976). The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil, 44(2), 445-449. https://doi.org/https://doi.org/10.1007/BF00015895
Wang, X. J., Wang, Z. Q., & Li, S. G. (2007). The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil Use and Management, 11, 99-102. https://doi.org/https://doi.org/10.1111/j.1475-2743.1995.tb00504.x
Yang, F., Tang, C., & Antonietti, M. (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms [10.1039/D0CS01363C]. Chemical Society Reviews, 50(10), 6221-6239. https://doi.org/10.1039/D0CS01363C