Document Type : Original Article

Authors

1 Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Malayer University, Malayer, Hamedan, Iran

2 Horticultural Sciences Engineering Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

3 Horticultural Sciences Department, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran

4 Research Center of Strawberry Improvement and Breeding, University of Kurdistan, Sanandaj, Iran

Abstract

Purpose: Unfortunately, the quick quality loss in strawberry fruit decreases its marketability. The purpose of this study is to investigate the effects of pre- and post-harvest treatments on the enhancement of fruit storability. Research method: Pre-harvest treatment of calcium chloride (Ca) 2% and nano calcium (nCa) 0.01%, and post-harvest treatments of Chitosan (CH) 1% and Carboxymethyl cellulose (CMC) 1% on strawberry storability were investigated for 15 days and under 95% relative humidity at 1 ˚C. Traits of fruits such as weight loss, firmness, decay amount, total soluble solid, anthocyanin concentration, total phenol, ascorbic acid and antioxidant activity were measured. Findings: 15 days after treatment, treated samples showed decreased weight loss (WL), which was 18% for the untreated sample and 12% for treated samples. A delayed decline in firmness was observed in treated samples and nCa+CH treatment had the highest firmness 15 days after cold storage. Fruit decay was the most in the control sample and the least in Ca+CH treatments. Total soluble solids and anthocyanin increased in control, but remained stable in treated samples. Total phenol (TP) amount was the least in control. CH treated samples had the highest level of TP. Ca+CMC treated samples gradually showed higher level of vitamin C (AA) than other treatments. Research limitations: There was not limitations. Originality/Value: These results proved that using edible coatings of CMC and CH, and pre-harvest treatment with Ca and nCa increase the storability of strawberry, and can be used commercially to increase storage time.

Keywords

Main Subjects

AC, A. (1990). Vitamin C (ascorbic acid) in vitamin preparations and juices. Official methods of analysis, 15th edn. AOAC, Arlington.
Aghababaei, L., Hasani, M., Shotorbani, P. M., Basti, A. A., & Hamedi, H. (2022). Antioxidant and antimicrobial characteristics of chitosan and galbanum gum composite coating incorporated with cumin essential oil on the shelf life of chicken fillets. Journal of Food Measurement and Characterization, 1–14. https://doi.org/10.1007/s11694-022-01295-4
Ahmadi Soleimanie, S., Vafaee, Y., & Koushesh Saba, M. (2020). Preharvest application of sodium nitroprusside improves tomato fruit quality and alleviates chilling injury during cold storage. International Journal of Vegetable Science, 26(4), 364–378. https://doi.org/10.1080/19315260.2019.1636444
Alharaty, G., & Ramaswamy, H. S. (2020). The effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. Journal of Composites Science, 4(3), 123. https://doi.org/10.3390/jcs4030123
Ali, S., Anjum, M. A., Ejaz, S., Hussain, S., Ercisli, S., Saleem, M. S., & Sardar, H. (2021). Carboxymethyl cellulose coating delays chilling injury development and maintains eating quality of ‘Kinnow’mandarin fruits during low temperature storage. International journal of biological macromolecules, 168, 77–85. https://doi.org/10.1016/j.ijbiomac.2020.12.028
Amini, F., Bayat, L., & Hosseinkhani, S. (2016). Influence of preharvest nano calcium applications on postharvest of sweet pepper (Capsicum annum). Nusantara Bioscience, 8(2), 215–220. https://doi.org/10.13057/nusbiosci/n080213
Amiri, S., Nicknam, Z., Radi, M., Sayadi, M., Bagheri, F., Khorrami, N. K., & Abedi, E. (2021). Postharvest quality of orange fruit as influenced by salicylic acid, acetic acid, and carboxymethyl cellulose coating. Journal of Food Measurement and Characterization, 1–19. https://doi.org/10.1007/s11694-021-00966-y
Amiri, S., Rezazad Bari, L., Malekzadeh, S., Amiri, S., Mostashari, P., & Ahmadi Gheshlagh, P. (2022). Effect of Aloe vera gel‐based active coating incorporated with catechin nanoemulsion and calcium chloride on postharvest quality of fresh strawberry fruit. Journal of Food Processing and Preservation, 46(10), e15960. https://doi.org/10.1111/jfpp.15960
Arah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: a mini review. International Journal of Agronomy, 2015(1) 478041. https://doi.org/https://doi.org/10.1155/2015/478041
Arnon, H., Granit, R., Porat, R., & Poverenov, E. (2015). Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chemistry, 166, 465–472. https://doi.org/10.1016/j.foodchem.2014.06.061
Bagheri, R., Ariaii, P., & Motamedzadegan, A. (2021). Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. Journal of Food Measurement and Characterization, 15(2), 1395–1402. https://doi.org/10.1007/s11694-020-00738-0
Bahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2022). Evaluation of proline-coated chitosan nanoparticles on decay control and quality preservation of strawberry fruit (cv. Camarosa) during cold storage. Horticulturae, 8(7), 648. https://doi.org/10.3390/horticulturae8070648
Çezik, F., & Saraçoğlu, O. (2024). The effect of pedicel length and post-harvest calcium chloride application on the storage life of strawberry fruit. Applied Fruit Science, 66(3), 843–853. https://doi.org/10.1007/s10341-024-01088-7
Chandler, C. K., Folta, K., Dale, A., Whitaker, V. M., & Herrington, M. (2012). Strawberry. In Fruit breeding (pp. 305–325). Springer.
Chen, F., Liu, H., Yang, H., Lai, S., Cheng, X., Xin, Y., Yang, B., Hou, H., Yao, Y., & Zhang, S. (2011). Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 126(2), 450–459. https://doi.org/10.1016/j.foodchem.2010.11.009
Cheng, G.W., & Breen, P.J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116(5), 865–869. https://doi.org/10.21273/JASHS.116.5.865
Cheour, F., Willemot, C., Arul, J., Makhlouf, J., & Desjardins, Y. (1991). Postharvest response of two strawberry cultivars to foliar application of CaCl2. HortScience, 26(9), 1186–1188. https://doi.org/10.21273/HORTSCI.26.9.1186
Chong, J. X., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control, 53, 195–205. https://doi.org/10.1016/j.foodcont.2014.12.035
Cordenunsi, B. R., Genovese, M. I., do Nascimento, J. R. O., Hassimotto, N. M. A., dos Santos, R. J., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91(1), 113–121. https://doi.org/10.1016/j.foodchem.2004.05.054
Du, J., Gemma, H., & Iwahori, S. (1997). Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66(1), 15–22. https://doi.org/10.2503/jjshs.66.15
Dunn, J. L., & Able, A. J. (2004). Pre-harvest calcium effects on sensory quality and calcium mobility in strawberry fruit. V International Strawberry Symposium 708,
Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications (Vol. 9). Springer. https://doi.org/10.1007/978-0-387-92824-1
Eroğul, D., Gundogdu, M., Sen, F., & Tas, A. (2024). Impact of postharvest calcium chloride treatments on decay rate and physicochemical quality properties in strawberry fruit. BMC Plant Biology, 24(1), 1088. https://doi.org/10.1186/s12870-024-05792-0
Eshghi, S., Hashemi, M., Mohammadi, A., Badii, F., Mohammadhoseini, Z., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food and Bioprocess Technology, 7(8), 2397–2409. https://doi.org/10.1007/s11947-014-1281-2
Fajardo, J., Waniska, R., Cuero, R., & Pettit, R. (1995). Phenolic compounds in peanut seeds: enhanced elicitation by chitosan and effects on growth and aflatoxin B1 production by Aspergillus flavus. Food Biotechnology, 9(1-2), 59–78.
Felicia, W. X. L., Rovina, K., Nur’Aqilah, M. N., Vonnie, J. M., Erna, K. H., Misson, M., & Halid, N. F. A. (2022). Recent advancements of polysaccharides to enhance quality and delay ripening of fresh produce: A review. Polymers, 14(7), 1341. https://doi.org/10.3390/polym14071341
Freire, M., Lebrun, M., Ducamp, M.-N., & Reynes, M. (2005). Evaluation of edible coatings in fresh cuts mango fruits. Information and Technology for Sustainable Fruit and Vegetable Production, FRUTIC 5, 12-16 September 2005, Montpellier, France.
Gao, Q., Xiong, T., Li, X., Chen, W., & Zhu, X. (2019). Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae, 253, 412–421.    https://doi.org/10.1016/j.scienta.2019.04.069
Gupta, S., Kant, K., Kaur, N., Jindal, P., Ali, A., & Naeem, M. (2025). Nano-calcium applications in modern agriculture: a review. Plant Nano Biology, 100147. https://doi.org/10.1016/j.plana.2025.100147
Hadiwijaya, Y., Putri, I., Mubarok, S., & Hamdani, J. (2020). Rapid and non-destructive prediction of total soluble solids of guava fruits at various storage periods using handheld near-infrared instrument. IOP Conference Series: Earth and Environmental Science,
Haydar, M. S., Ghosh, D., & Roy, S. (2024). Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: Recent understanding and concerns. Plant Nano Biology, 7, 100058. https://doi.org/10.1016/j.plana.2024.100058
Hosseini, S., Amini, J., Koushesh Saba, M., Karimi, K., & Pertot, I. (2020). Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology, 11, 1855. https://doi.org/10.3389/fmicb.2020.01855
Hussain, P., Meena, R., Dar, M., & Wani, A. (2012). Effect of post-harvest calcium chloride dip treatment and gamma irradiation on storage quality and shelf-life extension of Red delicious apple. Journal of food science and technology, 49(4), 415–426. https://doi.org/10.1007/s13197-011-0289-0
Jiang, Y., & Li, Y. (2001). Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chemistry, 73(2), 139–143. https://doi.org/10.1016/j.scienta.2017.08.037
Jiang, Y., Yu, L., Hu, Y., Zhu, Z., Zhuang, C., Zhao, Y., & Zhong, Y. (2020). The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. International Journal of Biological Macromolecules, 151, 278–285. https://doi.org/10.1016/j.ijbiomac.2020.02.169
Jianglian, D., & Shaoying, Z. (2013). Application of chitosan based coating in fruit and vegetable preservation: a review. Journal of Food Processing Technology, 4(5), 227. https://doi.org/10.4172/2157-7110.1000227
Koushesh Saba, M., & Sogvar, O. B. (2016). Combination of carboxymethyl cellulose-based coatings with calcium and ascorbic acid impacts in browning and quality of fresh-cut apples. LWT-Food Science and Technology, 66, 165–171. https://doi.org/10.1016/j.lwt.2015.10.022
Kumar, P., Sethi, S., & Sharma, R. (2018). Inhibition of browning in fresh-cut apple wedges through edible coatings and anti-browning agents. Indian Journal of Horticulture, 75(3), 517–522. https://doi.org/10.5555/20183359501
Kumar, P., Sethi, S., Sharma, R., Srivastav, M., & Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulturae, 226, 104–109. https://doi.org/10.1016/j.scienta.2017.08.037
Lara, I., Garcıa, P., & Vendrell, M. (2004). Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria× ananassa Duch.) fruit. Postharvest Biology and Technology, 34(3), 331–339. https://doi.org/10.1016/j.postharvbio.2004.05.018
Li, R., Chen, C., Chen, M., Wu, R., Sun, Y., Zhu, B., & Yao, Z. (2023). Fabrication of carboxymethyl chitosan/oxidized carboxymethyl cellulose composite film and its assessment for coating preservation of strawberry. Journal of Food Science, 88(5), 1865–1878.
Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., Elhakem, A., Almatrafi, M., Benajiba, N., & Helal, M. (2021). Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-020-80056-z
Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive reviews in food science and food safety, 6(3), 60–75. https://doi.org/10.1111/j.1541-4337.2007.00018.x
Lin, Y.-F., Hu, Y.-H., Lin, H.-T., Liu, X., Chen, Y.-H., Zhang, S., & Chen, Q.-X. (2013). Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. Journal of Agricultural and Food Chemistry, 61(11), 2889–2895.
Liu, H., Chen, F., Lai, S., Tao, J., Yang, H., & Jiao, Z. (2017). Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca). Food Chemistry, 225, 87–97. https://doi.org/10.1016/j.foodchem.2017.01.008
Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. https://doi.org/10.1016/j.scienta.2014.06.027
Maas, J. L. (2004). Strawberry disease management. Diseases of Fruits and Vegetables: Volume II, 441–483. https://doi.org/10.1007/1-4020-2607-2_12
Nguyen, V. T., Nguyen, D. H., & Nguyen, H. V. (2020). Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162, 111103. https://doi.org/10.1016/j.postharvbio.2019.111103
Nunes, M., Brecht, J., Morais, A., & Sargent, S. (1995). Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biology and Technology, 6(1-2), 17–28. https://doi.org/10.1016/0925-5214(94)00048-W
Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose-and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2021.02.025
Panahirad, S., Naghshiband-Hassani, R., Ghanbarzadeh, B., Zaare-Nahandi, F., & Mahna, N. (2019). Shelf life quality of plum fruits (Prunus domestica L.) improves with carboxymethylcellulose-based edible coating. HortScience, 54(3), 505–510. https://doi.org/10.21273/HORTSCI13751-18
Pareek, S. (2017). Novel postharvest treatments of fresh produce. CRC Press. https://doi.org/10.1201/9781315370149
Pizato, S., Vega-Herrera, S. S., Chevalier, R. C., Pinedo, R. A., & Cortez-Vega, W. R. (2022). Impact of chitosan coatings enriched with clove Essential oil on quality ofminimally processed strawberries. Brazilian Archives of Biology and Technology, 65. https://doi.org/10.1590/1678-4324-2022210278
Poovaiah, B. (1986). Role of calcium in prolonging storage life of fruits and vegetables. Food Technol, 40(5), 86–89. https://doi.org/10.5555/19870344749
Popescu, P.-A., Palade, L. M., Nicolae, I.-C., Popa, E. E., Miteluț, A. C., Drăghici, M. C., Matei, F., & Popa, M. E. (2022). Chitosan-based edible coatings containing essential oils to preserve the shelf life and postharvest quality parameters of organic strawberries and apples during cold storage. Foods, 11(21), 3317. https://doi.org/10.3390/foods11213317
Ranjbar, S., Rahemi, M., & Ramezanian, A. (2018). Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Scientia Horticulturae, 240, 57–64. https://doi.org/10.1016/j.scienta.2018.05.035
Ranjbar, S., Ramezanian, A., & Rahemi, M. (2020). Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Horticulture, Environment, and Biotechnology, 61(1), 23–30. https://doi.org/10.1007/s13580-019-00168-y
Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63–70. https://doi.org/10.1016/j.postharvbio.2006.11.015
Rikhotso, M. M., Magwaza, L. S., Tesfay, S. Z., & Mditshwa, A. (2019). Evaluating the efficacy of chitosan and CMC incorporated with moringa leaf extracts on reducing peteca spot incidence on ‘Eureka’lemon. Journal of Food Science and Technology, 56(11), 5074–5086. https://doi.org/10.1007/s13197-019-03980-7
Romanazzi, G., Nigro, F., Ippolito, A., Divenere, D., & Salerno, M. (2002). Effects of pre‐and postharvest chitosan treatments to control storage grey mold of table grapes. Journal of Food Science, 67(5), 1862–1867. https://doi.org/10.1111/j.1365-2621.2002.tb08737.x
Ruan, C., Zhang, Y., Sun, Y., Gao, X., Xiong, G., & Liang, J. (2019). Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork. International Journal of Biological Macromolecules, 141, 178–184. https://doi.org/10.1016/j.ijbiomac.2019.08.247
Saleem, M. S., Anjum, M. A., Naz, S., Ali, S., Hussain, S., Azam, M., Sardar, H., Khaliq, G., Canan, İ., & Ejaz, S. (2021). Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. International Journal of Biological Macromolecules, 189, 160–169. https://doi.org/10.1016/j.ijbiomac.2021.08.051
Sanchez-Moreno, C. larrauri, JA, Saura-Calixto, F.,(1998) A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.
Saure, M. C. (2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Scientia Horticulturae, 105(1), 65–89. https://doi.org/10.1016/j.scienta.2004.10.003
Sayyari, M., Esna‐Ashari, M., & Tarighi, T. H. (2022). Impacts of salicylic acid, chitosan, and salicyloyl chitosan on quality preservation and microbial load reduction in strawberry fruits during cold storage. Journal of Food Processing and Preservation, 46(7), e16710. https://doi.org/10.1111/jfpp.16710
Seyed, R. H., Rastegar, S., & Faramarzi, S. (2021). Impact of edible coating derived from a combination of Aloe vera gel, chitosan and calcium chloride on maintain the quality of mango fruit at ambient temperature. Journal of Food Measurement and Characterization, 1–11. https://doi.org/10.1007/s11694-021-00861-6
Shahbazi, Y. (2018). Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries. International Journal of Biological Macromolecules, 112, 264–272. https://doi.org/10.1016/j.ijbiomac.2018.01.186
Silva, R., Silva, S., Melo, F., Guimarães, G., Madruga, M., Lima, R., & Beaudry, R. (2015). Influence of biodegradable coatings on the volatiles profile of fresh-cut 'Paluma' guava. In III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety 1141, (pp, 319-326).
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sogvar, O. B., Koushesh Saba, M., & Emamifar, A. (2016a). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35. https://doi.org/10.1016/j.postharvbio.2015.11.019
Sogvar, O. B., Koushesh Saba, M., Emamifar, A., & Hallaj, R. (2016b). Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35, 168–176. https://doi.org/10.1016/j.ifset.2016.05.005
Sommer, N., Fortlage, R., & Edwards, D. (1992). Postharvest diseases of selected commodities.
Spinardi, A. (2004). Effect of harvest date and storage on antioxidant systems in pears. In V International Postharvest Symposium, June 2004, 682, (pp, 135-140).
Swallah, M. S., Sun, H., Affoh, R., Fu, H., & Yu, H. (2020). Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. International Journal of Food Science, 2020. https://doi.org/10.1155/2020/9081686
Tanada-Palmu, P. S., & Grosso, C. R. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199–208. https://doi.org/10.1016/j.postharvbio.2004.12.003
Tesfay, S., Magwaza, L., Mditshwa, A., & Mbili, N. (2017). Carboxyl methylcellulose (CMC) incorporated with moringa leaf and seed extracts as new postharvest organic edible coating for avocado (Persea americana Mill.) fruit. VII International Conference on Managing Quality in Chains (MQUIC2017) and II International Symposium on Ornamentals in 1201, (pp. 161-168).
Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43(1), 61–87. https://doi.org/10.1080/10408690390826455
Tian, S., Qin, G., & Li, B. (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 82(6), 593–602. https://doi.org/10.1007/s11103-013-0035-2
Tokatlı, K., & Demirdöven, A. (2021). Influences of chitosan coatings on functional compounds of sweet cherries. Journal of Food Science and Technology, 58(5), 1808–1818. https://doi.org/10.1007/s13197-020-04692-z
Vasey, C. (2006). The water prescription: For health, vitality, and rejuvenation. Simon and Schuster.
Vitti, A., Coviello, L., Triunfo, M., Guarnieri, A., Scieuzo, C., Salvia, R., Falabella, P., & Nuzzaci, M. (2024). In vitro antifungal activity and in vivo edible coating efficacy of insect-derived chitosan against Botrytis cinerea in strawberry. International Journal of Biological Macromolecules, 279(13515), 8. https://doi.org/10.1016/j.ijbiomac.2024.135158
Vu, K., Hollingsworth, R., Leroux, E., Salmieri, S., & Lacroix, M. (2011). Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International, 44(1), 198–203. https://doi.org/10.1016/j.foodres.2010.10.037
Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701–705. https://doi.org/10.1021/jf950579y
Wu, J., Zhang, L., & Fan, K. (2022). Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2022.2136136
Yaman, Ö., & Bayoιndιrlι, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food Science and Technology, 35(2), 146–150. https://doi.org/10.1006/fstl.2001.0827
Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., & Hu, Q. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 C. Journal of Food Science, 75(3), C236–C240. https://doi.org/10.1111/j.1750-3841.2010.01520.x
Zhang, Y., Zhang, M., & Yang, H. (2015). Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry, 174, 558–563. https://doi.org/10.1016/j.foodchem.2014.11.106
Zhou, R., Mo, Y., Li, Y., Zhao, Y., Zhang, G., & Hu, Y. (2008). Quality and internal characteristics of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) treated with different kinds of coatings during storage. Postharvest Biology and Technology, 49(1), 171–179. https://doi.org/10.1016/j.postharvbio.2007.12.004