Abarghuei, F. M., Etemadi, M., Ramezanian, A., Esehaghbeygi, A., & Alizargar, J. (2021). An application of cold atmospheric plasma to enhance physiological and biochemical traits of basil. Plants, 10(10), 1–16. https://doi.org/10.3390/plants10102088
Ahangari, M., Ramezan, Y., & Khani, M. R. (2021). Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). Journal of Food Process Engineering, 44(1). https://doi.org/10.1111/jfpe.13593
Akhavan-Mahdavi, S., Mirzazadeh, M., Alam, Z., & Solaimanimehr, S. (2023). The effect of chitosan coating combined with cold plasma on the quality and safety of pistachio during storage. Food Science and Nutrition, 11(7), 4296–4307. https://doi.org/10.1002/fsn3.3355
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. Lwt, 37(7), 687–695. https://doi.org/10.1016/j.lwt.2004.03.002
Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agricultural and Food Chemistry, 54(5), 1680–1686. https://doi.org/10.1021/jf0527448
Bussmann, F., Krüger, A., Scholz, C., Brust, H., & Stöhr, C. (2023). Long-term effects of cold atmospheric plasma-treated water on the antioxidative system of Hordeum vulgare. Journal of Plant Growth Regulation, 42(5), 3274–3290. https://doi.org/10.1007/s00344-022-10789-w
Dong, X. Y., & Yang, Y. L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8), 1409–1421. https://doi.org/10.1007/s11947-019-02305-y
Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2022). Putrescine with aloe vera gel coating improves bioactive compounds and quality of table grape under cold storage. Journal of Food Science and Technology, 59(10), 4085–4096. https://doi.org/10.1007/s13197-022-05461-w
Gheysarbigi, S., Mirdehghan, S. H., Ghasemnezhad, M., & Nazoori, F. (2020). The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.). Postharvest Biology and Technology, 159(May 2019), 110998. https://doi.org/10.1016/j.postharvbio.2019.110998
Hu, W., Sarengaowa, W., Guan, Y., & Feng, K. (2022). Biosynthesis of phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. Frontiers in Microbiology, 13(May), 1–8. https://doi.org/10.3389/fmicb.2022.906069
Jia, S., Zhang, N., Ji, H., Zhang, X., Dong, C., Yu, J., Yan, S., Chen, C., & Liang, L. (2022). Effects of atmospheric cold plasma treatment on the storage quality and chlorophyll metabolism of postharvest tomato. Foods, 11(24), 1–13. https://doi.org/10.3390/foods11244088
Khalaj, A., Ahmadi, E., Mirzaei, S., & Ghaemizadeh, F. (2024). Potential use of cold plasma treatment for disinfection and quality preservation of grape inoculated with Botrytis cinerea. Food Science and Nutrition, 12(3), 1818–1833. https://doi.org/10.1002/fsn3.3876
Khan, M. A., Azam, M., Ahmad, S., & Atiq, M. (2023). Improvement of physicochemicals, antioxidant system and softening enzymes by postharvest L-arginine application leads to maintain persimmon fruit quality under low temperature storage. Journal of Food Measurement and Characterization, 17(3), 2964–2977. https://doi.org/10.1007/s11694-023-01835-6
Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010
Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X., & Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. Lwt, 115(July), 108447. https://doi.org/10.1016/j.lwt.2019.108447
Makari, M., Hojjati, M., Shahbazi, S., & Askari, H. (2021). Elimination of Aspergillus flavus from Pistachio nuts with dielectric barrier discharge (dbd) cold plasma and its impacts on biochemical indices. Journal of Food Quality, 2021,1–12. https://doi.org/10.1155/2021/9968711
Mao, L., Mhaske, P., Zing, X., Kasapis, S., Majzoobi, M., & Farahnaky, A. (2021). Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. In Trends in Food Science and Technology, 116, 146–175. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.07.002
Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. https://doi.org/10.1007/s11947-014-1356-0
Nasibi, F., Farahmand, H., Noori, H., & Shahabi, Z. M. (2024). Cold atmospheric pressure plasma as eco-friendly technology prolonged the vase life and improved the quality of cut rose flowers. Scientia Horticulturae, 327(January), 112829. https://doi.org/10.1016/j.scienta.2023.112829
Park, B. J., Lee, D. H., Park, J. C., Lee, I. S., Lee, K. Y., Hyun, S. O., Chun, M. S., & Chung, K. H. (2003). Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Physics of Plasmas, 10(11), 4539–4544. https://doi.org/10.1063/1.1613655
Ramazzina, I., Tappi, S., Rocculi, P., Sacchetti, G., Berardinelli, A., Marseglia, A., & Rizzi, F. (2016). Effect of cold plasma treatment on the functional properties of fresh-cut apples. Journal of Agricultural and Food Chemistry, 64(42), 8010–8018. https://doi.org/10.1021/acs.jafc.6b02730
Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M. S., Pan, D., & Du, L. (2023). The application of cold plasma technology in low-moisture foods. Food Engineering Reviews, 15(1), 86–112. https://doi.org/10.1007/s12393-022-09329-9
Shakerardekani, A., Hashemi, M., Shahedi, M., & Dastjerdi, A. M. (2021). Enhancing the quality of fresh pistachio fruit using sodium alginate enriched with thyme essential oil. Journal of Agricultural Science and Technology, 23(1), 65–82.
Sheikhi, A., Mirdehghan, S. H., & Ferguson, L. (2019a). Extending storage potential of de-hulled fresh pistachios in passive-modified atmosphere. Journal of the Science of Food and Agriculture, 99(7), 3426–3433. https://doi.org/10.1002/jsfa.9560
Sheikhi, A., Mirdehghan, S. H., Karimi, H. R., & Ferguson, L. (2019b). Effects of passive- and active-modified atmosphere packaging on physio-chemical and quality attributes of fresh in-hull pistachios (Pistacia vera L. Cv. Badami). Foods, 8, 564–565. https://doi.org/10.3390/foods8110564
Shirani, K., Shahidi, F., & Mortazavi, S. A. (2020). Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. International Journal of Food Microbiology, 335(September), 108892. https://doi.org/10.1016/j.ijfoodmicro.2020.108892
Tajeddin, B., & Shakerardekani, A. (2022). The effect of packaging and storage time on quality of clustered fresh pistachio. Journal of Food Science, 87(7), 2943–2952. https://doi.org/10.1111/1750-3841.16190
Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2021). Argon and nitrogen cold plasma effects on wheat germ lipolytic enzymes: Comparison to thermal treatment. Food Chemistry, 346(March 2020), 128974. https://doi.org/10.1016/j.foodchem.2020.128974
Tsantili, E., Konstantinidis, K., Christopoulos, M. V., & Roussos, P. A. (2011). Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Scientia Horticulturae, 129(4), 694–701. https://doi.org/10.1016/j.scienta.2011.05.020
Won, M. Y., Lee, S. J., & Min, S. C. (2017). Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies, 39, 25–32. https://doi.org/10.1016/j.ifset.2016.10.021
Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of cold plasma technology on sensory, nutritional and safety quality of food: a review. Foods, 11(18), 1–20. https://doi.org/10.3390/foods11182818
Zhou, D., Li, T., Cong, K., Suo, A., & Wu, C. (2022). Influence of cold plasma on quality attributes and aroma compounds in fresh-cut cantaloupe during low temperature storage. LWT Food Science and Technology, 154, 112893. https://doi.org/10.1016/j.lwt.2021.112893