Document Type : Original Article

Authors

1 Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat, India

2 Department of Food Technology, School of Agriculture and Food Technology, VIGNAN’s Foundation for Science, Technology and Research, Vadlamudi, Guntur - 522213, Andhra Pradesh, India

3 Dr. APJ Abdul Kalam Govt. College, Silvassa – 396230, U.T. of Darda and Nagar Haveli, India

Abstract

Purpose: The study examined the effectiveness of polysaccharide-based edible coatings enriched with citral microencapsulated in β-cyclodextrin for extending shelf-life and maintaining the quality of fresh-cut ‘Totapuri’ mango. Research Method: The sodium alginate (AG), carrageenan (CG), pectin (PT), and polycationic chitosan (CH) were applied as layer-by-layer through electrostatic deposition and single layer. The changes in quality properties of coated and uncoated fresh-cut ‘Totapuri’ mango were evaluated during 18 days of storage period at 5°C. Physicochemical properties like colour change, firmness, weight loss, carotenoids, vitamin C and phenolics were measured. Sensory characteristics such as color, taste, texture and odor were evaluated. Additionally, enzymatic activities of polygalacturonase, peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase were evaluated and microbial growth was examined to check for contamination during storage. Findings: The application of AG and CH as single layer and layer-by-layer coatings especially AG+CH and CG+CH better maintained chroma (C), hue angle (h°), and lightness (L*), slowed down firmness and weight loss, retained carotenoids, vitamin C and phenolics as compared to single-layered and uncoated fresh-cut mango. Furthermore, layer-by-layer coatings of CH+AG and CH+CG reduced enzymatic activities of polygalacturonase (PG), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) and prevented microbial growth during 18 days of storage at 5°C. The application of alginate and chitosan as single-layered and layer-by-layer on fresh-cut ‘Totapuri’ scored the highest overall consumer acceptability when compared to other coating treatments. Research limitations: There were no limitations. Originality/Value: The study suggest that application of AG and CH as single layer and layer-by-layer polysaccharide-based edible coating of CH+AG and CH+CG are effective and safe method of preserving the quality and extending the shelf-life of fresh-cut ‘Totapuri’ mango for 18 days at 5°C.

Keywords

Main Subjects

Adiletta, G., Di Matteo, M., & Petriccione, M. (2021). Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. International Journal of Molecular Sciences22(5), 2633. https://doi.org/10.3390/ijms22052633
Alikhani-Koupaei, M. (2015). Liposomal and edible coating as control release delivery systems for essential oils: Comparison of application on storage life of fresh-cut banana. Quality Assurance and Safety of Crops & Foods7(2), 175-185. https://doi.org/10.3920/QAS2013.0297
Alhassan, N., & Ndomakaah, A. (2024). Aloe vera gel coating maintains physicochemical parameters, extends the storage life, and preserves the qualities of Lantundan and Cavendish bananas. Journal of Horticulture and Postharvest Research, 7(3), 287-300. https://doi.org/10.22077/jhpr.2024.7190.1357
Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2012). Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. International Food Research Journal, 19(1), 279–285.
Bhandari, B. R., D’Arc, B. R., & Thi Bich, L. L. (1998). Lemon oil to β-cyclodextrin ratio effect on the inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. Journal of Agricultural and Food Chemistry46, 1494-1499. https://doi.org/10.1021/jf970605n
Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT-Food Science and Technology47(1), 39-45. https://doi.org/10.1016/j.lwt.2012.01.005
Cegri, A. C., Munoz, M. O., Sierra, S., Carvajal, F., Gonzalez, F. S., Garrido, D., & Palma, F. (2023). Application of polysaccharide-based edible coatings to improve the quality of zucchini fruit during postharvest cold storage. Scientia Horticulturae, 314, 111941. https://doi.org/10.1016/j.scienta.2023.111941.
Cisse, M., Polidori, J., Montet, D., Loiseau, G., & Ducamp-Collin, M. N. (2015). Preservation of mango quality by using functional chitosan-lactoperoxidase systems coatings. Postharvest Biology and Technology, 101, 10–14. https://doi.org/10.1016/j.postharvbio.2014.11.003
Dea, S., Brecht, J. K., Nunes, M. C. N., & Baldwin, E. A. (2010). Quality of fresh-cut ‘Kent’mango slices prepared from hot water or non-hot water-treated fruit. Postharvest Biology and Technology56(2), 171-180. https://doi.org/10.1016/j.postharvbio.2010.01.007
Fan, F., Tao, N., Jia, L., & He, X. (2014). Use of citral incorporated in postharvest wax of citrus fruit as a botanical fungicide against Penicillium digitatum. Postharvest Biology and Technology, 90, 52-55. https://doi.org/10.1016/j.postharvbio.2013.12.005
Ghidelli, C., & Perez-Gago, M. B. (2018). Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition58(4), 662-679. https://doi.org/10.1080/10408398.2016.1211087
Gomes, M. P., Kitamura, R. S. A., Marques, R. Z., Barbato, M. L., & Zamocky, M. (2022). The Role of H2O2-Scavenging Enzymes (ascorbate peroxidase and catalase) in the Tolerance of Lemna minor to antibiotics: Implications for phytoremediation. Antioxidants11(1), 151. https://doi.org/10.3390/antiox11010151
Gonzalez-Aguilar, G. A., Wang, C. Y., & Buta, J. G. (2000). Maintaining quality of fresh-cut mangoes using antibrowning agents and modified atmosphere packaging. Journal of Agricultural and Food Chemistry48(9), 4204-4208. https://doi.org/10.1021/jf991384j
Gonzalez-Aguilar, G. A., Celis, J., Sotelo-Mundo, R. R., De la Rosa, L. A., Rodrigo-Garcia, J., & Alvarez-Parrilla, E. (2008). Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5°C. International journal of Food Science and Technology43(1), 91-101. https://doi.org/10.1111/j.1365-2621.2006.01394.x
Gonzalez-Aguilar, G. A., Ayala-Zavala, J. F., Olivas, G. I., De la rosa, L. A., & Parrilla, E. A. (2010). Preserving quality of fresh-cut products using safe technologies. Journal of Verbraucherschutz and Lebensmittelsicherheit, 5, 65–72. https://doi.org/10.1007/s00003-009-0315-6
Guerreiro, A. C., Gago, C. M., Faleiro, M. L., Miguel, M. G., & Antunes, M. D. (2015). The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biology and Technology110, 51-60. https://doi.org/10.1016/j.postharvbio.2015.06.019
Gu, X., Li, J., Yang, L., Liu, L., Li, T., Zhang, H., Gao, Y., & Xiao, L. (2024). Comparative study on the different edible coatings loaded with fennel essential oil/β-cyclodextrin microcapsules for blueberry preservation. The Journal of Horticultural Science and Biotechnology99(5), 584–596. https://doi.org/10.1080/14620316.2024.2318569
Guo, Y., Yu, Z., Li, R., Wang, L., Xie, C., & Wu, Z. (2023). Cut-wounding promotes phenolic accumulation in Cucumis melo L. fruit (cv. Yugu) by regulating sucrose metabolism. Horticulturae9(2), 258. https://doi.org/10.3390/horticulturae9020258
Gupta, D., Lall, A., Kumar, S., Patil, T. D., & Gaikwad, K. K. (2024). Plant-based edible films and coatings for food-packaging applications: Recent advances, applications, and trends. Sustainable Food Technology, 2, 1428-1455. https://doi.org/10.1039/D4FB00110A
Handojo, L. A., Shofinita, D., Evelina, G., & Nasution, A. N. (2022). Edible coating development to extend shelf life of mangoes (Mangifera indica L.). IOP Conference Series: Earth and Environmental Science, 980, 012046. https://doi.org/10.1088/1755-1315/980/1/012046
Hssaini, L. (2025). Controlling enzymatic browning in dried figs (Ficus carica L.) through chemical treatments and optimized storage conditions. Measurement: Food, 18, 100226. https://doi.org/10.1016/j.meafoo.2025.100226
International Commission on Microbiological Specifications for Foods. (1978). Microorganisms in Foods. Their Significance and Methods of Enumeration, (2nd ed.). University of Toronto Press.
Juric, S., Bures, M. S., Kahlina, K. V., Stracenski, K. S., Fruk, G., Jalsenjak, N., & Bandic, L. M. (2023). Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chemistry: X, 17, 100575. https://doi.org/10.1016/j.fochx.2023.100575
Kader, A. A. (2002). Quality parameters of fresh-cut fruit and vegetable products. In: O. Lamikanra (Ed.). Fresh-cut fruits and vegetables, Science, technology, and market (pp.11-20). CRC Press. http://dx.doi.org/10.1201/9781420031874.ch2
Karakurt, Y., & Huber, D. J. (2007). Characterization of wound-regulated cDNAs and their expression in fresh-cut and intact papaya fruit during low-temperature storage. Postharvest Biology and Technology, 44(2), 179-183. https://doi.org/10.1016/j.postharvbio.2006.12.002
Kumar, N., Petkoska, A. T., Al-Hilifi, S. A., & Fawole, O. A. (2021). Effect of chitosan–pullulan composite edible coating functionalized with pomegranate peel extract on the shelf-life of mango (Mangifera indica). Coatings11(7), 764. https://doi.org/10.3390/coatings11070764
Li, H., & Yu, T. (2001). Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. Journal of the Science of Food and Agriculture81(2), 269-274. https://doi.org/10.1002/1097-0010(20010115)81:2%3C269::AID-JSFA806%3E3.0.CO;2-F
Lim, Y. Y., Lim, T. T., & Tee, J. J. (2006). Antioxidant properties of guava fruit: Comparison with some local fruits. Sunway Academic Journal3, 9-20.
Long, Y., Xie, L., Yi, P., Huang, F., Huang, M., Gan, T., Sun, J., Li, L., Dong, H., Wei, Q., Fan, Z., & Cheng, Q. (2025). Changes in cell wall characteristics and expression of MiERF12, MiERF109-like, and MiERF113 during mango softening. Postharvest Biology and Technology, 227, 113532. https://doi.org/10.1016/j.postharvbio.2025.113532
Ma, W., Li, J., Murtaza, A., Iqbal, A., Zhang, J., Zhu, L., Xu, X., Pan, S., & Hu, W. (2022). High-pressure carbon dioxide treatment alleviates browning development by regulating membrane lipid metabolism in fresh-cut lettuce. Food Control, 134, 108749. https://doi.org/10.1016/j.foodcont.2021.108749
Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillon, J., & Guerrero, O. J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science10, 1073. https://doi.org/10.3389/fpls.2019.01073
Malik, C. P., & Singh, M. B. (1980). Plant enzymology and histo-enzymology. Kalyani Publishers.
Mantilla, N., Castell-Perez, M. E., Gomes, C., & Moreira, R. G. (2013). Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT-Food Science and Technology51(1), 37-43. https://doi.org/10.1016/j.lwt.2012.10.010
Martinon, M. E., Moreira, R. G., Castell-Perez, M. E., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4°C. LWT-Food Science and Technology56(2), 341-350. https://doi.org/10.1016/j.lwt.2013.11.043
Mazumdar, B. C., & Majumder, K. (2003). Methods on physico-chemical analysis of fruits. Daya Publishing House.
McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition49(6), 577-606.  https://doi.org/10.1080/10408390902841529
Moon, K. M., Kwon, E. B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules25(12), 2754. https://doi.org/10.3390/molecules25122754
Moradinezhad, F., Sedgley, M., Klieber, A., & Able, A. J. (2008). Variability of responses to 1‐methylcyclopropene by banana: influence of time of year at harvest and fruit position in the bunch. Annals of Applied Biology, 152(2), 223-234. https://doi.org/10.1111/j.1744-7348.2007.00206.x
Ngo, T. M. P., Nguyen, T. H., Dang, T. M. Q., Do, T. V. T., Reungsang, A., Chaiwong, N., & Rachtanapun, P. (2021). Effect of pectin/nanochitosan-based coatings and storage temperature on shelf-life extension of "Elephant" mango (Mangifera indica L.) fruit. Polymers13(19), 3430. https://doi.org/10.3390/polym13193430
Nguyen, V. T. B., & Nguyen, H. V. H. (2021). Postharvest quality of strawberry (Fragaria × ananassa duch.) coated with calcium and nano-chitosan as affected by different storage temperatures. Journal of Horticulture and Postharvest Research, 4(4), 413-426. https://doi.org/10.22077/jhpr.2021.4106.1194
Olivas, G. I., & Barbosa-Cánovas, G. V. (2005). Edible coatings for fresh-cut fruits. Critical Reviews in Food Science and Nutrition45(7-8), 657-670. https://doi.org/10.1080/10408690490911837
Papadakis, S. E., Abdul-Malek, S., Kamdem, R. E., & Yam, K. L. (2000). A versatile and inexpensive technique for measuring color of foods. Food Technology54(12), 48-51.
Poverenov, E., Danino, S., Horev, B., Granit, R., Vinokur, Y., & Rodov, V. (2014). Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate–chitosan combination. Food and Bioprocess Technology7(5), 1424-1432. https://doi.org/10.1007/s11947-013-1134-4
Ranjbari, F., Moradinezhad, F. & Khayyat, M. (2018). Efficacy of nitric oxide and film wrapping on quality maintenance and alleviation of chilling injury on pomegranate fruit. Journal of Agricultural Science and Technology, 20(5), 1025-1036.
Rocha, A. M., Ferreira, J. F., Silva, A. M., Almeida, G. N., & Morais, A. M. (2007). Quality of grated carrot (var. Nantes) packed under vacuum. Journal of the Science of Food and Agriculture87(3), 447-451. https://doi.org/10.1002/jsfa.2723
Roe, J. H., & Oesterling, M. J. (1944). The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2, 4-dinitrophenylhydrazine method. Journal of Biological Chemistry152(3), 511-517. https://doi.org/10.1016/S0021-9258(17)32566-8
Rukunuzzaman, M., Rahman, M. A., Khatun, M. A., Begum, M. L., Akter, N., & Islam, M. T. (2025). Physio-biochemical and antioxidative enzymatic changes in ambient stored ‘Misribhog’ mango in response to chitosan and Aloe vera gel coatings. Journal of Horticulture and Postharvest Research, 8(3), 397-412. https://doi.org/10.22077/jhpr.2025.8835.1471          
Salehi, F. (2020). Edible coating of fruits and vegetables using natural gums: A review. International Journal of Fruit Science20(2), 5570-5589. https://doi.org/10.1080/15538362.2020.1746730
Seifi, E., & Bekran, A. (2024). The effect of some edible coating treatments on shelf life of pomegranate arils cultivar “Malas-e Saveh”. Journal of Horticulture and Postharvest Research, 7, 35-46. https://doi.org/10.22077/jhpr.2023.6632.1327
Sharma, S., & Rao, T. V. R. (2017). Responses of fresh-cut products of four mango cultivars under two different storage conditions. Journal of Food Science and Technology54(6), 1689-1702. https://doi.org/10.1007/s13197-017-2601-0
Shiri, M. A., Ghasemnezhad, M., Bakhshi, D., & Saadatian, M. (2011). Effects of ascorbic acid on phenolic compounds and antioxidant activity of packaged fresh cut table grapes. Electronic Journal of Environmental, Agricultural & Food Chemistry10(7), 2506-2515.
Silva, W. B., Silva, G. M. C., Santana, D. B., Salvador, A. R., Medeiros, D. B., Belghith, I., da-Silva, N. M., Cordeiro, M. H. M., & Misobutsi, G. P. (2018). Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry242, 232–238. https://doi.org/10.1016/j.foodchem.2017.09.052
Song, C., Wang, J., Wu, L., Liu, J., Liu, G., Gong, D., Zhang, W., Wei, J., & Zhang, Z. (2025). Quality and physiological changes in fresh-cut mango fruit as affected by cold plasma-activated water. Postharvest Biology and Technology, 225, 113524. https://doi.org/10.1016/j.postharvbio.2025.113524
Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science158(1-2), 87-96. https://doi.org/10.1016/S0168-9452(00)00304-6
Toivonen, P. M., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology48(1), 1-14. https://doi.org/10.1016/j.postharvbio.2007.09.004
Trevino-Garza, M. Z., Garcia, S., Heredia, N., Alanis-Guzman, M. G., & Arevalo-Nino, K. (2017). Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology128, 63-75. https://doi.org/10.1016/j.postharvbio.2017.01.007
Ullah, S. K., Nitu, N. J., Howlader, P., Mehedi, N. H., & Bose, S. K. (2025). Natural preservatives maintained postharvest quality, reduced decay percentage and increased shelf life of mango. International Journal of Horticultural Science and Technology, 12(4), 1261-1280. https://doi.org/10.22059/ijhst.2025.379925.890
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Wang, Z. F., Ying, T. J., Bao, B. L., & Huang, X. D. (2005). Characteristics of fruit ripening in tomato mutant epi. Journal of Zhejiang University Science B6(6), 502–507. https://doi.org/10.1631/jzus.2005.B0502
Wani, S. M., Gull, A., Ahad, T., Malik, A. R., Ganaie, T. A., Masoodi, F. A., & Gani, A. (2021). Effect of gum Arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: Assessing the physicochemical, enzyme activity and bioactive properties. International Journal of Biological Macromolecules, 183, 2100-2108. https://doi.org/10.1016/j.ijbiomac.2021.06.008
Zheng, B., Shahzaib, M., Mi, Z., Jiang, X., Zhu, Y., Cong, H., Wang, Y., Xu, X., Liu, C., & Qiao, F. (2025). Electron beam irradiation significantly improves post-harvest fruit quality and shelf-life of mango (Mangifera indica L.), Postharvest Biology and Technology, 228, 113647. https://doi.org/10.1016/j.postharvbio.2025.113647
Zhu, Z., & Zhan, L. (2010). Characterization of polyphenol oxidase from water caltrop (Trapa acornis Nakano) fruits. Journal of Food Biochemistry34(6), 1125-1140. https://doi.org/10.1111/j.1745-4514.2010.00353.x
Zhou, Y., Liu, J., Zhuo, Q., Zhang, K., Yan, J., Tang, B., Wei, X., Lin, L., & Liu, K. (2023). Exogenous glutathione maintains the postharvest quality of mango fruit by modulating the ascorbate-glutathione cycle. PeerJ, 11, 15902. https://doi.org/10.7717/peerj.15902