Document Type : Original Article

Author

Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Purpose: One of the problems in today's world is the pollution of the environment with heavy metals, which extraction of metals from mines, industrial and agricultural activities have caused significant pollution of soils and waters to metals. Research method: Fulvic acid at 15, 30, and 60 L ha-1 and zeolites at 1000, 2000, and 4000 kg ha-1 have formed the treatments, and the cadmium content was added to the region. The absorbance of cadmium, zinc, and nitrogen elements, as well as the dry weight of aerial organs and root of Spinacia oleracea var. inermis, was investigated. Findings: The application of fulvic acid and zeolite resulted in higher absorption of the elements and higher biomass weight compared to the control. In this case, fulvic acid at 30 L ha-1 and zeolite at 4000 kg ha-1had the best results own, and the accumulated amounts of cadmium and zinc in the root of the Spinach were higher than that of the aerial organs. Due to its acidic nature, fulvic acid caused higher mobility of elements than zeolite. Also, the application of the treatments caused better vegetative growth of the plant and moderation of the effects of stress. Limitations: There was no restriction on conducting this research. Originality/Value: Based on the results, the use of fulvic acid and zeolite can significantly increase the absorption of cadmium toxic metal from the organs of the Spinach plant and help the further release of this element from the soil.

Keywords

Main Subjects

Ahlberg, G., Gustafsson, O., & Wedel, P. (2006). Leaching of metals from sewage sludge during one year and their relationship to particle size. Environmental Pollution, 144(2), 545-553. https://doi.org/10.1016/j.envpol.2006.01.022,
Ali, A., Deng, X., Hu, X., Gill, R. A., Ali, S., Wang, S., & Zhou, W. (2015). Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica Napus L. Journal of Agricultural Science and Technology, 17, 63-74.
Alyemeni, M. N., Ahanger, M. A., Wijaya, L., Alam, P., Bhardwaj, R., & Ahmad, P. (2018). Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 255, 459–469. http://dx.doi.org/10.1007/s00709-017-1162-4
Andronikashvili, T., Pagava, K., Kurashvili, T., & Eprikashvili, L. (2009). Possibility of application of natural zeolites for medicinal purposes. Bulletin of the Georgian National Academy of Science, 3(2), 158–167.
Asadi Kapourchal, S. O., Asadi Kapourchal, S. A., Pazira, E., & Homaee, M. (2009). Assessing radish (raphanus sativus L.) potential for phytoremediation of lead- contaminated soils resulting from air pollution. Plant, Soil and Environment Journal, 55(5), 202-206.
Asik, B. B., Turan, M. A., Celik, H., & Katkat, A. V. (2009). Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian Journal of Crop Science, 1(2), 87-95. http://dx.doi.org/ 10.3923/ajcs.2009.87.95
Ayas, H., & Gulser, F. (2005). The effect of sulfur and humic acid on yield components and macronutrient contents of Carrot. Journal of Biological Sciences, 5(6), 801- 804.
Barančíková, G., & Makovníková, J. (2003). The influence of humic acid quality on the sorption and mobility of heavy metals. Plant, Soil and Environment, 49(12), 565–571. http://dx.doi.org/10.17221/4195-PSE
Basa, B., Lattanzio, G., Solti, A., Toth, B., Abadia, J., Fodor, F., & Sarvari, E. (2014). Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet (Beta vulgaris L.). Environmental and Experimental Botany, 101, 1–11. http://dx.doi.org/10.1016/j.envexpbot.2013.12.026.
Boruvka, L., & Drabek, O. (2004). Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant, Soil and Environment, 50(8), 339-345. https://doi.org/10.17221/4041-PSE.
Carolin C. F., Kumar P. S., Saravanan A., Joshiba G. J., & Naushad M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. Journal of Environmental Chemical Engineering, 5, 2782–2799. http://dx.doi.org/10.1016/j.jece.2017.05.029
Castaldi, P., Santona, L., Enzo, S., & Melis, P, (2008), Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations. Journal of Haardous Materials, 156, 428–434. http://dx.doi.org/10.1016/j.jhazmat.2007.12.040.
Contin, M., Miho, L., Pellegrini, E., Gjoka, F., & Shkurta, E. (2019). Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. Journal of Soils and Sediments, 19, 4052–4062. https://doi.org/10.1007/s11368-019-02359-7.
Di Toppi, L.S., Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130. https://doi.org/10.1016/S0098-8472(98)00058-6
El-Mahrouk, E. S. M., Eisa, E. A. H., Hegazi, M. A., Abdel-Gayed, M. E. S., Dewir, Y. H., El-Mahrouk, M. E., & Naidoo, Y. (2019). Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience, 54(7), 1249–1257. https://doi.org/10.21273/HORTSCI14018-19
Esmaeili, A., Mobini, M., & Eslami, H. (2019). Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Applied Water Science, 9, 97. https://doi.org/10.1007/s13201-019-0977-x
Farouk, S., Mosa, A. A., Taha, A. A., Ibrahim, H. M., & EL-Gahmery, A. M. (2011). Protective effect of humic acid and chitosan on Radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology & Biochemistry, 7(2), 99-116.
Foley, B. (2002). Paper mill residuals and compost effects on soil carbon and physical properties. Journal of Environmental Quality, 31(6), 2086-2095. http://dx.doi.org/10.2134/jeq2002.2086
Golomeova, M., & Zendelska, A. (2016). Application of some natural porous raw materials for removal of lead and zinc from aqueous solutions. In: Dariani R.S. (ed.): Microporous and Mesoporous Materials. Rijeka, In Tech, 21–49. ISBN 978-953-51-2582-2. http://dx.doi.org/10.5772/62347
Jafarnejadi, A. R., Homaee, M., Sayyad, G. A., & Bybordi, M. (2011). Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil Sedim. Contam. Journal, 20(1), 98-113. https://doi.org/10.1080/15320383.2011.528472
Kaschl, A., Römheld, V., & Chen, Y. (2002). The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Science of the Total Environment, 291(1-3), 45-57. http://dx.doi.org/10.1016/S0048-9697(01)01091-9
Khayyat, M., Tafazoli, E., Eshghi, S., & Rajaee, S. (2007). Effect of nitrogen, boron, potassium and zinc spray on yield and fruit quality of date palm. American-Eurasian Journal of Agriculture and Environmental Sciences, 2, 289-296.
Khodaverdiloo, H., & Homaee, M. (2008). Modeling cadmium and lead phytoextraction from contaminated soils. Polish Journal of Soil Science, XLI (2), 149-162.
KluIáková, M., & Pekar, M. (2006). New model for equilibrium sorption of metal ions on solid humic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286(1-3), 126–133. https://doi.org/10.1016/j.colsurfa.2006.03.013
KluIáková, M., & Pavlíková, M. (2017). Lignitic humic acids as environmentally-friendly adsorbent for heavy metals. Journal of Chemistry, 7169019, 5 pages. https://doi.org/10.1155/2017/7169019
Lalor, G. C. (2008). Review of cadmium transfers from soil to humans and its health effects and Jamaican environment. The Science of the Total Environment, 400(1-3), 162-72. https://doi.org/10.1016/j.scitotenv.2008.07.011
Lefèvre, I., Marchal, G., Meerts, P.,Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65(1), 142-152. http://dx.doi.org/10.1016/j.envexpbot.2008.07.005
Leung, S., Barrington, S., Wan, Y., Zhao, X., & El- Husseini, B. (2007).  Zeolite (clinoptilolite) as feed additive to reduce manure mineral content. Bioresour Technology, 98(17), 3309-3316. https://doi.org/10.1016/j.biortech.2006.07.010
Li, H., Shi, W., Shao, H., & Shao, M. (2009). The remediation of the lead-polluted garden soil by natural zeolite. Journal of Hazardous Materials, 169, 1106–1111. https://doi.org/10.1016/j.jhazmat.2009.04.067
Liu, M., Bi, J., Liu, X., Kang, J., Korpelainen, H., Niinemets, Ü., & Li, C. (2020). Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology, 40(1), 30–45. https://doi.org/10.1093/treephys/tpz115
Mauskar, J. M. (2007). Cadmium –An environment toxicant, central pollution control board, ministry of environment & frests, Govt of India,Parivesh Bhawan,East Arjun Nagar,Delhi-110032.
Murtić, S., Sijahović, E., Čivić, H., Tvica, M., & Jurković, T. (2020). In situ immobilisation of heavy metals in soils using natural clay minerals. Plant, Soil and Environment, 66, (12), 632–638. https://doi.org/10.17221/371/2020-PSE
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhiza and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429-448.     https://doi.org/10.1016/j.biotechadv.2013.12.005.
Polat, E., Karaca, M., Demir, H., & Naci Onus, A. (2004). Use of natural zeolita(clinoptilolite) in agriculture. Journal of Fruit and Ornamental Plant Research, 12, 183- 189.
Radojevec, M., & Baskin, V. N. (1999). Practical environmental analysis. Royal Society of Chemistry, Cornwall UK.
Rangnekar, S. S., Sahu, S. K., Pandit, G. G., & Gaikwad, V. B. (2013). Study of uptake of Pb and Cd by three nutritionally important Indian vegetables grown in artificially contaminated soils of Mumbai, India. International Research Journal of Environment Sciences, 2(9), 53-59.
Ratnasari, I. F. D., Hadi, S. N., Suparto, S. R., Herliana, O., & Ahadiyat, Y. R. (2020). Phytoremediation of cadmium-contaminated soil using terrestrial kale (Ipomoea reptans Poir) and corncob biochar. Journal of Degraded and Mining Lands Management, 7(4), 2313-2318. https://doi.org/10.15243/jdmlm.2020.074.2313
Reza, A., Habib, M., Najafi Kakavand, S., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M. (2020). Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 9, 177. https://doi.org/10.3390/biology9070177
Rosalina, F., Gafur, M. A. A., Irnawati, I., Soekamto, M. H., Sangadji, Z., & Kahar, M. S. (2019). Utilization of compost and zeolite as ameliorant on quartz sand planting media for Caisim (Brassica Juncea) plant growth. IOP Conf. Series: Journal of Physics: Conference Series, 1155, 012055. https://doi.org/10.1088/1742-6596/1155/1/012055
Sangeetha, N., Palani, S., & Ramar, U. (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. 18th Word Congress of Soil Science, Philadelphia. Pencilvania, USA.
Shah, F. R., Ahmad, N., Masood, K. R., & Zahid, D. M. (2008). The influence of cadmium and chromium on the biomass production of Shisham (Dalbergia sissoo ROXB.) seedlings. Pakistan Journal of Botany. 40(4), 1341-1348.
Smiri, M., Chaoui, A., Rouhier, N., Gelhaye, E., Jacquot, J. P., & El Ferjani, E. (2011). Cadmium affects the glutathione/glutaredoxin system in germinating pea seeds. Biological Trace Element Research, 142, 93–105. https://doi.org/10.1007/s12011-010-8749-3
Vhahangwele, M., & Mugera, G. W. (2015). The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic waste waters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. Journal of Environmental Chemical Engineering, 3(4), 2416–2425. https://doi.org/10.1016/j.jece.2015.08.016
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnol Advances, 27(2), 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
Wang, Y., & Oyaizu, H. (2009). Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials, 168(2-3), 760-764. https://doi.org/10.1016/j.jhazmat.2009.02.082
Wong, J., Li, K, Zhou, L., & Selvam, A. (2007). The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge. Geoderma, 137(3-4), 310-317.
Xiao, X., Tongbin, C., Zhizhuang, A., & Mei, L. (2008). Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation. Journal of Environmental Sciences, 20(1), 62-67. https://doi.org/10.1016/S1001-0742(08)60009-1
Zeng, Y., Woo, H., Lee, G., & Park, J. (2010). Adsorption of Cr (VI) on hexadecylpyridium bromide (HDPB) modified natural zeolites. Journal of Microporous and Mesoporous Materials, 130(1-3), 83-91. https://doi.org/10.1016/j.micromeso.2009.10.016.
Zhang, Y., Yang, X., Zhang, S., Tian, Y., Guo, W., & Wang, J. (2013). The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils. Journal of Soil Science and Plant Nutrition, 13(1), 43-53. http://dx.doi.org/10.4067/S0718-95162013005000005
Zhao, F. J., & McGrath, S. P. (2009). Biofortification and phytoremediation. Plant Biology, 12, 373-380. http://dx.doi.org/10.1016/j.pbi.2009.04.005