Adrover, A., Brasiello, A., & Ponso, G. (2019). A moving boundary model for food isothermal drying and shrinkage: A shortcut numerical method for estimating the shrinkage factor.
Journal of Food Engineering, 244, 212-219.
https://doi.org/10.1016/j.jfoodeng.2018.09.030
Ajani, C., Curcio, S., Dejchanchaiwong, R., & Tekasakul, P. (2019). Influence of shrinkage during natural rubber sheet drying: Numerical modeling of heat and mass transfer.
Applied Thermal Engineering, 149, 798-806.
https://doi.org/10.1016/j.applthermaleng.2018.12.054
Aliakbarian, B., Sampaio, F. C., de Faria, J. T., Pitangui, C. G., Lovaglio, F., Casazza, A. A., . . . Perego, P. (2018). Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network.
LWT, 93, 220-228.
https://doi.org/10.1016/j.lwt.2018.03.048
Aprajeeta, J., Gopirajah, R., & Anandharamakrishnan, C. (2015). Shrinkage and porosity effects on heat and mass transfer during potato drying.
Journal of Food Engineering, 144, 119-128.
https://doi.org/10.1016/j.jfoodeng.2014.08.004
Aral, S., & Bese, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.
Food Chemistry, 210, 577-584.
https://doi.org/10.1016/j.foodchem.2016.04.128
Atalar, I., & Dervisoglu, M. (2015). Optimization of spray drying process parameters for kefir powder using response surface methodology.
LWT - Food Science and Technology, 60(2, Part 1), 751-757.
https://doi.org/10.1016/j.lwt.2014.10.023
Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D., & Di Matteo, M. (2013). Mathematical modeling of eggplant drying: Shrinkage effect.
Journal of Food Engineering, 114(1), 99-105.
https://doi.org/10.1016/j.jfoodeng.2012.07.031
Golestani, R., Raisi, A., & Aroujalian, A. (2013). Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient.
Drying Technology, 31(1), 40-51.
https://doi.org/10.1080/07373937.2012.714826
Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage.
Journal of Food Engineering, 79(1), 47-56.
https://doi.org/10.1016/j.jfoodeng.2006.01.025
Hussain, T., Kamal, M. A., & Hafiz, A. (2021). Comparative analysis of apple and orange during forced convection cooling: experimental and numerical investigation [J].
AIMS Energy, 9(2), 193-212. https://doi.org/
10.3934/energy.2021011
Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnoly, 25(2), 461-468. https://doi.org/10.1007/s10068-016-0064-0
Lin, Y., Li, S., Zhu, Y., Bingol, G., Pan, Z., & McHugh, T. H. (2009). Heat and mass transfer modeling of apple slices under simultaneous infrared dry blanching and dehydration process.
Drying Technology, 27(10), 1051-1059.
https://doi.org/10.1080/07373930903218446
Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers.
Food and Bioproducts Processing, 107, 49-60.
https://doi.org/10.1016/j.fbp.2017.09.006
Majeed, M., Hussain, A. I., Chatha, S. A., Khosa, M. K., Kamal, G. M., Kamal, M. A., . . . Liu, M. (2016). Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology.
Saudi Journal of Biological Sciences, 23(3), 389-396.
https://doi.org/10.1016/j.sjbs.2015.04.010
Mutuli, G. P., Gitau, A. N., & Mbuge, D. O. (2020). Convective Drying Modeling Approaches: a Review for Herbs, Vegetables, and Fruits. Journal of Biosystems Engineering, 1-16. https://doi.org/10.1007/s42853-020-00056-9
Nguyen, T. K., Khalloufi, S., Mondor, M., & Ratti, C. (2018). Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.
Food Research International, 103, 215-225.
https://doi.org/10.1016/j.foodres.2017.10.013
Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (
Ipomoea batatas L.) during drying.
Journal of Science of Food and Agriculture, 98(4), 1310-1324.
https://doi.org/10.1002/jsfa.8595
Radojčin, M., Pavkov, I., Bursać Kovačević, D., Putnik, P., Wiktor, A., Stamenković, Z., . . . Gere, A. (2021a). Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: A Review.
Processes, 9(1), 132.
https://doi.org/10.3390/pr9010132
Ranjbar Nedamani, A., & Hashemi, S. J. (2021). RSM-CFD modeling for optimizing the apricot water evaporation. Journal of Food and Bioprocess Engineering, 4 (2), 112-119. https://doi.org/10.22059/jfabe.2021.320809.1088
Rojas, M. L., Augusto, P. E. D., & Cárcel, J. A. (2020). Ethanol pre-treatment to ultrasound-assisted convective drying of apple.
Innovative Food Science & Emerging Technologies, 61.
https://doi.org/10.1016/j.ifset.2020.102328
Senadeera, W., Adiletta, G., Onal, B., Di Matteo, M., & Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices.
Foods, 9(1).
https://doi.org/10.3390/foods9010101
Sumic, Z., Vakula, A., Tepic, A., Cakarevic, J., Vitas, J., & Pavlic, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).
Food Chemistry, 203, 465-475.
https://doi.org/10.1016/j.foodchem.2016.02.109
Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer.
International Journal of Thermal Sciences, 136, 539-548.
https://doi.org/10.1016/j.ijthermalsci.2018.10.042
Zecchi, B., & Gerla, P. (2020). Effective diffusion coefficients and mass flux ratio during osmotic dehydration considering real shape and shrinkage.
Journal of Food Engineering, 274, 109821.
https://doi.org/10.1016/j.jfoodeng.2019.109821
Ziaratban, A., Azadbakht, M., & Ghasemnezhad, A. (2017). Modeling of volume and surface area of apple from their geometric characteristics and artificial neural network.
International Journal of Food Properties, 20(4), 762-768.
https://doi.org/10.1080/10942912.2016.1180533