Almeida, M. D., Oliveira, M. M., & Saibo. N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40, 326–345.
https://doi.org/10.1590/1678-4685-gmb-2016-0106
Araújo, W. L., Fernie A. R., & Nunes-Nesi A. (2011). Control of stomatal aperture: a renaissance of the old guard.
Plant Signaling and Behavior, 6, 1305–1311.
https://doi.org/10.4161/psb.6.9.16425
Arnon, D. I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1- 15.
Ashraf, M. (1994). Organic substances responsible for salt tolerance in
Eruca sativa.
Biologia. Plantarum, 36, 255-259, https://doi.org/10.1007/BF02921095
Calzone, A., Cotrozzi, L., Pellegrini, E., Guidi, L., Lorenzini, G., & Nali, C. (2020). Differential response strategies of pomegranate cultivars lead to similar tolerance to increasing salt concentrations.
Scientia Horticulturae, 271, 109441.
https://doi.org/10.1016/j.scienta.2020.109441
Dichala, O., Therios, I., Papadopoulos, A., Chatzistathis, T., Chatzisavvidis, C., & Antonopoulou, C. (2021). Effects of varying concentrations of different salts on the mineral composition of leaves and roots of three pomegranates (
Punica granatum L.) cultivars.
Scientia Horticulturae, 275, 109718.
https://doi.org/10.1016/j.scienta.2020.109718
Emami, A. (1996). Methods of plant analysis. Agricultural Research and Education Organization. Soil and Water Institute. 130 Pp.
Guo, F. O., & Tang, Z. C. (1999). Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt-tolerant mutant of wheat. Chinese Academy of Sciences, 41(9), 217-220.
Ibrahim, H.I.M. 2016. Tolerance of two pomegranates cultivars (Punica granatum L.) to salinity stress under hydroponic culture conditions. Journal of Basic Applied Science Research Flora, 4, 38-46.
Karimi, H.R. & Z. Hasanpour. 2014. Effects of salinity and water stress on growth and macronutrient concentration of pomegranate (Punica granatum L.). Journal Plant Nutrition, 37, 1937–1951. https://doi.org/10.1080/01904167.2014.920363.
Khayyat, M., Tehranifar, A., Davarynejad, G.H., & Sayyari-Zahan, M.H. (2014). Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of ‘Malas-e-Saveh’ and ‘Shishe-Kab’ pomegranates in response to salinity stress. Photosynthetica, 52(2), 301-312. https://doi.org/10.1007/s11099-014-0034-9.
Liu, C., Ming, Y., Xianbin, H., & Zhaohe, Y. (2018). Effects of salt stress on growth and physiological characteristics of pomegranate (Punica granatum L.) cuttings. Pakistan Journal of Botany, 50 (2), 457-464.
Lutts, S., Kinet, J.M., & Bouharmont, J. (1995). Changes in plant response to NaCl during the development of rice (
Oryza sativa L.) varieties differing in salinity resistance.
Journal of Experimental Botany, 46, 1843–1852.
https://doi.org/10.1093/jxb/46.12.1843
Marschner, H. (1995). Mineral Nutrition of Higher Plants. 2nd Ed. Pp.892. Academic Press Ltd., London 1995.
Massai, R., Remorni, D., & Tattini, M. (2004). Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Journal of Plant Soil Science, 259, 153-162. https://www.jstor.org/stable/24124369
Mastrogiannidou, E., Chatzissavvidis, C., Antonopoulou, C., Tsabardoukas, V., Giannakoula, A., & Therios, I. (2016). Response of pomegranate cv. wonderful plants tο salinity. Journal of Soil Science and Plant Nutrition, 16(3), 621-636. http://dx.doi.org/10.4067/S0718-95162016005000032.
Momenpour, A., & Imani, A. (2018). Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera L.) cultivars. Advances in Horticultural Science, 32 (2), 249-264. https://doi.org/10.13128/ahs-22261
Momenpour, A., Imani, A., Bakhshi, D., & Akbarpour, E. (2018). Evaluation of salinity tolerance of some selected almond genotypes budded on GF
677 rootstock.
International Journal of Fruit Science, 18(4), 410-435.
https://doi.org/10.1080/15538362.2018.1468850
Munns, R., James, R.A., & Lauchli, A. (2006).
Approaches to increasing the salt tolerance of wheat and other cereals.
Journal of Experimental Botany, 57, 1025-1043.
https://doi.org/10.1093/jxb/erj100
Naeini, M. R., Khoshgoftarmanesh, A. H., & Fallahi, E. (2006a). Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity.
Journal Plant Nutrition, 29, 1835-1843.
https://doi.org/10.1080/01904160600899352.
Naeini, M. R., Khoshgoftarmanesh, A. H., Lessani, H., & Fallahi, E. (2006b). Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate.
Journal Plant Nutrition, 27, 1319-1326.
https://doi.org/10.1081/PLN-200025832
Okhovatian-Ardakani, A. R., Mehrabanian, M., Dehghani, F., & Akbarzadeh, A. (2010). Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars.
Plant Soil and Environment, 56(4), 176–185.
https://doi.org/10.17221/158/2009-PSE
Pang, C. H., & Wang, B. S. (2008).
Oxidative stress and salt tolerance in llants. In: In: Lüttge, U., Beyschlag, W., Murata, J. (Eds.), Progress in Botany, vol. 69. Springer, Berlin, pp. 231–245.
https://doi.org/10.1007/978-3-540-72954-9_9.
Papadakis, I. E., Veneti, G., Chatzissavvidis, C., Sptiropoulos, T. E., Dimassi, N., & Therios, I. (2007). Growth, mineral composition, leaf chlorophyll and water relationships of two cherry varieties under NaCl-induced salinity stress
. Soil Science and Plant Nutrition, 53, 252-258.
https://doi.org/10.1111/j.1747-0765.2007.00130.x
Parvizi, H., Sepaskhah, A. R., & Ahmadi, S. H. (2016). Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root-zone drying and deficit irrigation regimes. Agricultural Water Management, 163, 146–158. https://doi.org/10.1016/j.agwat.2015.09.019
Sarkhosh, A., Zamani, Z., , Fatahi, R., & . Ebadi, A. (2006). RAPD markers reveal polymorphism among some Iranian pomegranate (
Punica granatum L.) genotypes.
Journal of Horticultural Science, 111, 24–29. https://doi.org/
10.1016/j.scienta.2006.07.033
Shibli, R. A., Shatnawi, M. A., & Swaidat, I. Q. (2003). Growth, osmotic adjustment and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro.
Communication in Soil Science and Plant Analysis, 34, 1969-1979.
https://doi.org/10.1081/CSS-120023231
Silva-Ortega, C.O., Ochoa-Alfaro, A.E., & Reyes-Aguerro, J.A. (2008). Salt stress increases the expression of
p5cs gene and
induces proline accumulation in cactus pear.
Plant Physiology and
Biochemistry, 46, 82-92.
https://doi.org/10.1081/CSS-120023231
Szczerba, M. W., Britto, D. T., & Kronzucker, H. J. (2009). K
+ transport in plants: physiology and molecular biology.
Journal of Plant Physiology, 166, 447-466. DOI:
10.1016/j.jplph.2008.12.009
Szczerba, M. W., Britto, D. T., Balkos, K. D., & Kronzucker, H. J. (2008). NH
4+ stimulated and -inhibited components of K+ transport in rice (
Oryza sativa L.).
Journal of Experimental Botany, 59, 3415–3423. https://doi.org/
10.1093/jxb/ern190
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527. https://doi.org/10.1093/aob/mcg058.
Yamasaki, S., & Dillenburg, L. C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11, 69-75.