Document Type : Original Article

Authors

1 Regional Center of Agriculture Research of Sidi Bouzid (CRRA) PB 357, 9100 Sidi Bouzid, Tunisia

2 Department of Pomology, Experimental Station of Aula Dei-CSIC, Zaragoza, Spain

Abstract

Purpose: Apricot production extends from the north to the south of Tunisia with many cultivars adapted to different local microclimates. This large extension of apricot is associated with an important genetic diversity, which is threatened to erosion. This study aims to select cultivars with enhanced antioxidant capacity that will benefit consumers with health-promoting properties. Research Method: This study was conducted over three growing seasons (2016-2018) in flesh fruits nine apricot cultivars (Amor Leuch,Bakour, Búlida,Bayoudhi, Canino, Khit eloued, Khad hlima, Sayeb and Wardi). The experiment was established in private apricot orchard in the region of Hajeb Laayoun- Kairouan, west central Tunisia. Findings: Results showed that the fruit firmness ranged from 20.4 N in the cultivar Sayeb to 32.5 N in the cultivar Canino. The soluble solids content varied from 10.2 °Brix in the cv. Bakour to 15.0 °Brix in the cultivar Bayoudhi. A wide range of variability was found among the apricot cultivars with regard to the phenolic compounds content [32.7-71.5 mg GAE/100 g FW]. The cultivar Khad Hlima presented the highest value of relative antioxidant capacity (366.8 μg Trolox Equivalents/g FW). Our study permits to select the cv. Bakour with the needed precocity, the cv. Canino with high firmness, the cv. Bayoudhi with the highest SSC and the cv. Khad Hlima with high nutritional quality. Research limitations: No limitations were found. Originality/Value: This study represents a valuable source of genotypes to be used in apricot breeding programs.

Keywords

Main Subjects

Abidi, W., Cantín, C. M., Jiménez, S., Giménez, R., Moreno, M. A., & Gogorcena, Y. (2015). Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach [Prunus persica (L.) Batsch] progeny. Journal of the Science of Food and Agriculture, 95, 351–358. https://doi.org/10.1002/jsfa.6727.
 Abidi, W., Jiménez, S., Moreno, M.Á., & Gogorcena, Y. (2011). Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. International Journal of Molecular Sciences, 12, 6919 - 6935. https://doi.org/10.3390/ijms12106919.
Akin, E.B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry, 107, 939-948. https://doi.org/10.1016/j. foodchem.2007.08.052.
Asma, B.M., & Ozturk, K. (2005). Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genetic Resources and Crop Evolution 52(3), 305-313. https://doi.org/10.1007/s10722-003-1384-5.
Bureau, S., Renard, C.M.G.C., Reich, M., Ginies, C., & Audergon, J-M. (2009). Change in anthocyanin concentrations in red apricot fruits during ripening. Lebensmittel-Wissenschaft und-Technologie, 42(1), 372- 377. https://doi.org/10.1016/j.lwt.2008.03.010.
Caliskan, O., Bayazit, S., & Sumbul, A. (2012). Fruit quality and phytochemical attributes of some apricot (Prunus armeniaca L.) cultivars as affected by genotypes and seasons. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(2), 284-294. https://doi.org/doi:10.15835/nbha4028044.
 Carbone, K., Ciccoritti, R., Paliotta, M., Rosato, T., Terlizzi, M., & Cipriani, G. (2018).  Chemometric classification of early-ripening apricot (Prunus armeniaca L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Scientia Horticulturae, 227, 187–195. https://doi.org/10.1016/j.scienta.2017.09.020.
Crisosto, C.H., Garner, D., Andris, H.L., & Day, K.R. (2004). Controlled delayed cooling extends peach market life. HortTechnology, 14, 99–104.
Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102, 966–975. https://doi.org/10.1016/j.foodchem.2006.04.001.
Fan, X., Jiao, W., Wang, X., Cao J., & Jiang W. (2017). Polyphenol composition and antioxidant capacity in pulp and peel of apricot fruits of various varieties and maturity stages at harvest. International Journal of Food Science and Technology, 53, 327–336. https://doi.org/10.1111/ijfs.13589.
Faostat, (2022). http://faostat.fao.org
Fratianni, F., Cozzolino, R., d’Acierno, A., Ombra, M.N., Spigno, P., Riccardi, R., Malorni, L., Stocchero, M., & Nazzaro, F. (2022). Biochemical characterization of some varieties of apricot present in the Vesuvius area, Southern Italy. Frontiers Nutrition, 9, 854868. https://doi.org/10.3389/fnut.2022.854868.
Gecer, M.K., Kan, T., Gundogdu, M., Ercisli, S., Ilhan, G., & Sagbas, H.I. (2020). Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genetic Resources and Crop Evolution, 67(2), 1-11. https://doi.org/10.1007/s10722-020-00893-9.
 Hegedús, A., Engel, R., Abrankó, L., Balogh, E., Blázovics, A., Hermán, R., Halász, J., Ercisli, S., Pedryc, A., & Stefanovits-Banyai, E. (2010). Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: Variations from genotypes, years, and analytical methods. Journal of Food Science, 75(9), 722-730. http://doi.org/10.1111/j.1750-3841.2010.01826.x.
Ihns, R., Diamante, L. M., Savage, G. P., & Vanhanen, L. (2011). Effect of temperature on the drying characteristics, color, antioxidant and beta-carotene contents of two apricot varieties. International Journal of Food Science and Technology, 46(2), 275–283. https://doi.org/10.1111/j.1365-2621.2010.02506.x.
Karatas, N. (2022). Evaluation of nutritional content in wild apricot fruits for sustainable apricot production. Sustainability, 14, 1063. https://doi.org/10.3390/ su14031063.
Krichen, L., Trifi-Farah, N., & Marrakchi, M. (2009). Evaluation of the current apricot variability in Tunisia – comparison with previously described cultivars. Acta Horticulturae, 814, 113–120. https://doi.org/10.13140/2.1.1147.9041.
Leccese, A., Viti, R., & Bartolini, S. (2011). The effect of solvent extraction on antioxidant properties of apricot fruit. Central European Journal of Biology, 6, 199–204. https://doi.org/10.2478/s11535-010-0113-2.
Lo Bianco, R., Farina, V., Indelicato, S.G., Filizzola, F., & Agozzino, P. (2010). Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. Journal of the Science of Food and Agriculture, 90, 1008–1019. https://doi.org/10.1002/jsfa.3910.
Lopes, M. S., Sefc, K. M., Laimer, M., & Da Câmara Machado, A. (2002). Identification of microsatellite loci in apricot. Molecular Ecology Resources, 2(1), 24–26. https://doi.org/10.1046/j.1471-8286.2002.00132.x.
Lozano, J.E., & Ibarz, A. (1997). Color changes in concentrated fruit pulp during heating at high temperatures. Journal of Food Engineering, 31(3), 365-373.   https://doi.org/10.1016/S0260-8774(96)00079-9.
Miloševic, T., Miloševiæ, N., Glišiæ, I., & Šekularac, G. (2013). Influence of stock on physical and chemical traits of fresh apricot fruit. International Agrophysics, 27(1), 111-114. https://doi.org/10.2478/v10247-012-0075-x.
Piagnani, M., Castellari, L., Sgarbi, P., & Bassi, D. (2013). Fruit quality evaluation of diverse apricot cultivars. Aspects of Applied Biology, 119,139-144.
Pinar, H., Unlu, M., Ercisli, S., Uzun, A., Bircan, M., Yilmaz, K.U., & Agar, G. (2013). Determination of genetic diversity among wild grown apricots from Sakit valley in Turkey using SRAP markers. Journal of Applied Botany and Food Quality, 86, 55 – 58. https://doi.org/10.5073/JABFQ.2013.086.008.
Ruiz, D., & Egea, J. (2008). Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica, 163(1), 143–158. https://doi.org/10.1007/s10681-007-9640-y.
Ruiz, D., Egea, J., Tomas-Barberan, F.A., & Gil, M.I. (2005). Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agriculture and Food Chemistry, 53, 6368–6374. https://doi.org/10.1021/jf0480703.
Scandella, D., Sibille, I., Venien, S., Lichou, J., & Jay M. (1998). Apricot: evaluating organoleptic quality evaluating organoleptic quality. Infos-Ctifl, 141, 22-25.
Singh, M., Suman, S., & Shukla, Y. (2014). New enlightenment of skin cancer chemoprevention through phytochemicals: In vitro and in vivo studies and the underlying mechanisms. BioMed Research International, 243452. http://doi.org/10.1155/2014/243452.
Wani, A.A., Zargar, S.A., Malik, A.H., Kashtwari, M., Nazir, M., Khuroo, A.A., Ahmad, F., & Dar, T.A. (2017). Assessment of variability in morphological characters of apricot germplasm of Kashmir, India. Scientia Horticulturae, 225, 630–637. https://doi.org/10.1016/j.scienta.2017.07.029.