Arah, I. K., Ernest, K. K., Etornam, K. A., & Harrison, A. (2015). An overview of post-harvest losses in tomato production in Africa: causes and possible prevention strategies. Journal of Biology, Agriculture and Healthcare, 5(16), 78-88.
Batu, A., &Thompson, A. K. (1998). Effects of modified atmosphere packaging on postharvest qualities of pink tomatoes. Turkish Journal of Agriculture and Forestry, 22(4), 365-372.
Bessi, H., Debbabi, H, Grissa, K., & Bellagha, S. (2014). Microbial reduction and quality of stored date fruits treated byelectrolyzed water.
Journal Food Quality, 37(1), 42-49.
https://doi.org/10.1111/jfq.12072
Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries.
Postharvest Biology and Technology, 4, 106-115.
https://doi.org/10.1016/j.postharvbio.2006.01.004
Chen, Y., Hung, Y-C., Chen, M., & Lin, H. (2017). Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage.
LWT-Food Science and Technology, 84, 650-657.
https://doi.org/10.1016/j.lwt.2017.06.011
Chen, Y., Hung, Y-C., Chen, M., Lin, M., & Lin, H. (2019). Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism.
Food Chemistry, 270, 229-235.
https://doi.org/10.1016/j.foodchem.2018.07.095
Dash, P. K., Das, S., Ray, J., & Pride, L. (2022). Optimization of strawberry precooling temperature using CoolBot: a potential post-harvest management tool pertinent to the subtropical environment.
International Journal of Postharvest Technology and Innovation, 8(4), 271-291.
http://doi.org/10.1504/IJPTI.2022.10050416
Dewi, F. R., Stanley, R., Powell, S. M., & Burke, C. M. (2017). Application of electrolyzed oxidizing water as a sanitizer to extend the shelf-life of seafood products: a review
. Journal of Food Science and Technology, 54(5),1321-1332.
https://doi.org/10.1007%2Fs13197-017-2577-9
Ding, T., Ge, Z., Shi, J., Xu, Y. T., Jones, C.L., & Liu, D. H. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits.
LWT-food Science and Technology,
60(2), 1195-1199.
https://doi.org/10.1016/j.lwt.2014.09.012
Elumalai, V., Naresh, M., Chinna, E., Narendar, P., & Kumar, R. (2012). Evaluation of antiulcer activity of Couroupita Guianensis Aubl. Leaves. Asian Journal of Pharmacy and Technology, 2(2), 64-66.
Fallanaj, F., Ippolito, A., Ligorio, A., Garganese, F., Zavanella, C., & Sanzani, S. M. (2016). Electrolyzed sodium bicarbonate inhibits
Penicillium digitatum and induces defense responses against green mould in citrus fruit.
Postharvest Biology and Technology, 115, 18-29.
https://doi.org/10.1016/j.postharvbio.2015.12.009
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., & Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Hussain, M. S., Kwon, M., Park, E. J., Seheli, K., Huque, R., & Oh, D. H. (2019). Disinfection of
Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat.
LWT-Food Science and Technology, 116, 108582.
https://doi.org/10.1016/j.lwt.2019.108582
Ippolito, A., Mincuzzi, A., Surano, A., Youssef, K., & Sanzani, S. M. (2021). Electrolyzed water as a potential agent for controlling postharvest decay of fruits and vegetables. In: Spadaro, D., Droby, S., Gullino, M. L. (eds) Postharvest Pathology.
Plant Pathology, 11, 181-202.
https://doi.org/10.1007/978-3-030-56530-5_12 v
Issa-Zacharia, A., Kamitani, Y., Morita, K., & Iwasaki, K. (2010). Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers. Food Control, 21, 740-745.
Jadid, N., Hidayati, D., Hartanti, S. R., Arraniry, B. A., Rachman, R. Y., & Wikanta, W. (2017). Antioxidant activities of different solvent extracts of Piperretrofractumvahl. using DPPH assay.
Proceedings of AIP International Biology Conference, 1854, 020019.
https://doi.org/10.1063/1.4985410
Kassim, A., Workneh, T. S., Laing, M. D., & Basdew, I. H. (2016). The effects of different pre-packaging treatments on the quality of kumquat fruit.
CyTA Journal of Food, 14(5), 639-648.
https://doi.org/10.1080/19476337.2016.1190407
Khatun, Z., Dash, P. K. Mannan, M. A. (2022). Influence of precooling systems on postharvest quality and shelf life of dragon fruits (
Hylocereus polyrhizus).
Journal of Bangladesh Agricultural University, 20(3), 313-322.
https://doi.org/10.5455/JBAU.63376
Kim, C., Hung, Y. C., & Brackett, R. E. (2000). Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens.
Journal of Food Protection, 63(1),19-24.
https://doi.org/10.4315/0362-028X-63.1.19
Len, S. V., Hung, Y. C., Erickson, M., & Kim, C. (2000). Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH.
Journal of Food Protection, 63(11),1534-1537.
https://doi.org/10.4315/0362-028x-63.11.1534
Li, X., Wu, X., & Huang, L. (2009). Correlation between antioxidant activities and phenolic contents of radix
Angelicae sinensis (Danggui).
Molecules, 14(12), 5349-5361.
https://doi.org/10.3390/molecules14125349
Lin, Y. F., Chen, M. Y., Lin, H. T., Hung, Y. C., Lin, Y. X., Chen, Y.H., & John, S. (2017). DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system.
Food Chemistry, 22, 497-505.
https://doi.org/10.1016/j.foodchem.2017.02.045
Mahmoud, B. S. (2007). Electrolyzed water: a new technology for food decontamination - a review. Deutsche Lebensmittel-Rundschau, 103(5), 212-221.
Martinez, A., Conde, E., Moure, A., Dominguez, H., & Estevez, R. J. (2012). Protective effect against oxygen reactive species and skin fibroblast stimulation of
Couroupita guianensis leaf extracts.
Natural Product Research, 26(4), 314-322.
https://doi.org/10.1080/14786411003752094
Mazumdar, D. B. C., & Majumdar, K. (2001). Methods of physico-chemical analysis of fruits. Daya Publishing House, India. 112-115.
Odeyemi, O. M., Kitinoja, L, Dubey, N., Musanase, S., & Gill, G. S. (2021). Preliminary study on improved postharvest practices for tomato loss reduction in Nigeria, Rwanda and India.
African Journal of Science, Technolology, Innovation and Development, 14(6), 1500-1505.
https://doi.org/10.1080/20421338.2021.1961986
Pandurangan, P., Sahadeven, M., Sunkar, S., & Dhana, S. K. N. M. (2018). Comparative analysis of biochemical compounds of leaf, flower and fruit of
Couroupita guianensis and synthesis of silver nanoparticles.
Pharmacognosy Journal, 10(2), 315-323.
http://doi.org/10.5530/pj.2018.2.55
Qin, Y. Y., Liu, D., Wu, Y., Yuan, M. L., Li, L., & Yang, J. Y. (2015). Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (
Agaricus bisporus).
Postharvest Biology and Technology, 99, 73-79.
https://doi.org/10.1016/j.postharvbio.2014.07.018
Raveendra, B., Kiran, S., Kumari, V., Jyothi, R., & Bhavani, D. (2016). UV Spectrophotometric method for the estimation of roflumilast in human serum.
Pharmaceutica Analitica Acta, 7(6),1-4.
http://doi.org/10.4172/2153-2435.1000487
Saini, R. S., Sharma, K. D., Dhankhar, O. P., & Kaushik, R. A. (2006). Laboratory manuals for analytical techniques in horticulture. Agrobios Publishing Co. Ltd., India. 5-16.
Sinha, S. R., Singha, A., Faruquee, M., Jiku, M. A. S., Rahman, M. A., Alam, M. A., & Kader, M. A. (2019). Post-harvest assessment of fruit quality and shelf life of two elite tomato varieties cultivated in Bangladesh.
Bulletin of the National Research Centre, 43, 185.
https://doi.org/10.1186/s42269-019-0232-5
Suslow, T. V. (2004). Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. ANR Publication No. 8149; University of California Davis: Oakland, CA, USA. 1-5.
Tang, J., Chen, H., Lin, H., Hung, Y. C., Xie, H., & Chen, Y. (2021). Acidic electrolyzed water treatment delayed fruit disease development of harvested longans through inducing the disease resistance and maintaining the ROS metabolism systems.
Postharvest Biology and Technology, 171, 111349.
https://doi.org/10.1016/j.postharvbio.2020.111349
Vasquez-Lopez, A., Villarreal-Barajas, T., & Rodriguez-Ortiz, G. (2016). Effectiveness of neutral electrolyzed water on incidence of fungal rot on tomato fruits (
Solanum lycopersicum L.).
Journal of Food Protection, 79(10),1802-1806.
https://doi.org/10.4315/0362-028x.jfp-15-494
Wang, C., Gao, Y., Tao, Y., Wu, X. Z., & Zhibo, C. (2017). Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage.
Innovative Food Science and Emerging Technologies, 41, 397-403.
https://doi.org/10.1016/j.ifset.2017.04.007
Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity.
Postharvest Biology and Technology, 122, 3-10.
https://doi.org/10.1016/j.postharvbio.2016.05.012
Workneh, T. S., Osthoff, G., & Steyn, M. (2012). Effects of preharvest treatment, disinfections, packaging and storage environment on quality of tomato.
Journal of Food Science and Technology,
49(6), 685-694.
https://doi.org/10.1007%2Fs13197-011-0391-3
Xu, F. X., Wang, S. H., Xu, J., Liu, S. Y., & Li, G.D. (2016). Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries.
Postharvest Biology and Technology, 117, 125-131.
https://doi.org/10.1016/j.postharvbio.2016.01.012
YAS. (2020). Yearbook of Agricultural Statistics. Statistics Division, ministry of planning. Government of the People’s Republic of Bangladesh. 298.
Zhang, W., Cao, J., & Jiang, W. (2021). Application of electrolyzed water in postharvest fruits and vegetables storage; A review.
Trends in Food Science and technology, 114, 599-607.
https://doi.org/10.1016/j.tifs.2021.06.005