Document Type : Original Article

Authors

1 Horticulture Laboratory, Agrotechnology Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh

2 Agrotechnology Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh

3 Postdoctoral Research Associate, Mechanical Engineering Department, Texas A&M University at Qatar, Doha, Qatar

Abstract

Purpose: Managing postharvest losses to extend shelf life and cut down on waste is of paramount importance nowadays, especially when resources are scarce. Extracts from the leaves of the cannonball tree and electrolyzed oxidizing water were employed to improve postharvest handling procedures. Research method: The experiment consisted of cannonball tree leaf extracts (5 ml/L, 10 ml/L, 15 ml/L, 20 ml/L) and two pH levels of electrolyzed oxidizing water (pH 3, pH 5). Tomato treated with distilled water was considered as a control. The experiment was conducted as a Completely Randomized Design under a factorial arrangement with three replications. Findings:  Cannonball tree leaf extracts (10 ml/L) significantly retained acceptable fruit color, firmness, high level of titratable acidity, flavonoid, carotenoid, anthocyanin, vitamin C, IC50 and prolonged shelf life by more than three days over other treatment combinations. Compared to untreated fruit, treated fruit decayed at a slower rate (30.7 0.4%) and lost less weight (35.4 0.7%). Additionally, electrolyzed oxidizing water (pH 5) significantly outperformed alternative postharvest management techniques to lower postharvest losses, IC50 (121.6 2.1 mg/Kg) activity, enhancing titratable acidity and vitamin C content, and other physico-chemical attributes and thereby increasing tomato shelf life by more than two days. Research limitations: No limitations were encountered. Originality/Value: Electrolyzed oxidizing water (pH 5) or cannonball tree leaf extract (10 ml/L) appears to be the most promising sustainable solution for reducing postharvest tomato losses.

Keywords

Main Subjects

Aday, M. S. (2016). Application of electrolyzed water for improving postharvest quality of mushroom. LWT-Food Science and Technology, 68, 44-51. https://doi.org/10.1016/j.lwt.2015.12.014
Arah, I. K., Ernest, K. K., Etornam, K. A., & Harrison, A. (2015). An overview of post-harvest losses in tomato production in Africa: causes and possible prevention strategies. Journal of Biology, Agriculture and Healthcare, 5(16), 78-88.
Batu, A., &Thompson, A. K. (1998). Effects of modified atmosphere packaging on postharvest qualities of pink tomatoes. Turkish Journal of Agriculture and Forestry, 22(4), 365-372. 
Bessi, H., Debbabi, H, Grissa, K., & Bellagha, S. (2014). Microbial reduction and quality of stored date fruits treated byelectrolyzed water. Journal Food Quality, 37(1), 42-49. https://doi.org/10.1111/jfq.12072
Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology, 4, 106-115. https://doi.org/10.1016/j.postharvbio.2006.01.004
Chen, Y., Hung, Y-C., Chen, M., & Lin, H. (2017). Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. LWT-Food Science and Technology, 84, 650-657. https://doi.org/10.1016/j.lwt.2017.06.011
Chen, Y., Hung, Y-C., Chen, M., Lin, M., & Lin, H. (2019). Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism. Food Chemistry, 270, 229-235. https://doi.org/10.1016/j.foodchem.2018.07.095
Dash, P. K., Das, S., Ray, J., & Pride, L. (2022). Optimization of strawberry precooling temperature using CoolBot: a potential post-harvest management tool pertinent to the subtropical environment. International Journal of Postharvest Technology and Innovation, 8(4), 271-291. http://doi.org/10.1504/IJPTI.2022.10050416
Dewi, F. R., Stanley, R., Powell, S. M., & Burke, C. M. (2017). Application of electrolyzed oxidizing water as a sanitizer to extend the shelf-life of seafood products: a review. Journal of Food Science and Technology, 54(5),1321-1332. https://doi.org/10.1007%2Fs13197-017-2577-9
Ding, T., Ge, Z., Shi, J., Xu, Y. T., Jones, C.L., & Liu, D. H. Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT-food Science and Technology60(2), 1195-1199. https://doi.org/10.1016/j.lwt.2014.09.012
Elumalai, V., Naresh, M., Chinna, E., Narendar, P., & Kumar, R. (2012). Evaluation of antiulcer activity of Couroupita Guianensis Aubl. Leaves. Asian Journal of Pharmacy and Technology, 2(2), 64-66.
Fallanaj, F., Ippolito, A., Ligorio, A., Garganese, F., Zavanella, C., & Sanzani, S. M. (2016). Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defense responses against green mould in citrus fruit. Postharvest Biology and Technology, 115, 18-29. https://doi.org/10.1016/j.postharvbio.2015.12.009
Hassan, M. K., & Dann, E. (2019). Effects of treatment with electrolyzed oxidizing water on postharvest diseases of avocado. Agriculture, 9(11), 241.   https://doi.org/10.3390/agriculture9110241
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., & Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Hussain, M. S., Kwon, M., Park, E. J., Seheli, K., Huque, R., & Oh, D. H. (2019). Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. LWT-Food Science and Technology, 116, 108582. https://doi.org/10.1016/j.lwt.2019.108582
Ippolito, A., Mincuzzi, A., Surano, A., Youssef, K., & Sanzani, S. M. (2021). Electrolyzed water as a potential agent for controlling postharvest decay of fruits and vegetables. In: Spadaro, D., Droby, S., Gullino, M. L. (eds) Postharvest Pathology. Plant Pathology, 11, 181-202. https://doi.org/10.1007/978-3-030-56530-5_12
Iram, A., Wang, X., & Demirci, A. (2021). Electrolyzed Oxidizing Water and its applications as sanitation and cleaning agent. Food Engineering Review13, 411-427. https://doi.org/10.1007/s12393-021-09278-9
Issa-Zacharia, A., Kamitani, Y., Morita, K., & Iwasaki, K. (2010). Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers. Food Control, 21, 740-745.
Jadid, N., Hidayati, D., Hartanti, S. R., Arraniry, B. A., Rachman, R. Y., & Wikanta, W. (2017). Antioxidant activities of different solvent extracts of Piperretrofractumvahl. using DPPH assay. Proceedings of AIP International Biology Conference, 1854, 020019. https://doi.org/10.1063/1.4985410
Kassim, A., Workneh, T. S., Laing, M. D., & Basdew, I. H. (2016). The effects of different pre-packaging treatments on the quality of kumquat fruit. CyTA Journal of Food, 14(5), 639-648. https://doi.org/10.1080/19476337.2016.1190407 
Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. https://doi.org/10.1007/s13197-011-0251-1
Khatun, Z., Dash, P. K.  Mannan, M. A. (2022). Influence of precooling systems on postharvest quality and shelf life of dragon fruits (Hylocereus polyrhizus). Journal of Bangladesh Agricultural University, 20(3), 313-322. https://doi.org/10.5455/JBAU.63376
Kim, C., Hung, Y. C., & Brackett, R. E. (2000). Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63(1),19-24. https://doi.org/10.4315/0362-028X-63.1.19
Len, S. V., Hung, Y. C., Erickson, M., & Kim, C. (2000). Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. Journal of Food Protection, 63(11),1534-1537. https://doi.org/10.4315/0362-028x-63.11.1534
Li, X., Wu, X., & Huang, L. (2009). Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules, 14(12), 5349-5361. https://doi.org/10.3390/molecules14125349
Lin, Y. F., Chen, M. Y., Lin, H. T., Hung, Y. C., Lin, Y. X., Chen, Y.H., & John, S. (2017). DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system. Food Chemistry, 22, 497-505. https://doi.org/10.1016/j.foodchem.2017.02.045
Mahmoud, B. S. (2007). Electrolyzed water: a new technology for food decontamination - a review. Deutsche Lebensmittel-Rundschau, 103(5), 212-221.
Martinez, A., Conde, E., Moure, A., Dominguez, H., & Estevez, R. J. (2012). Protective effect against oxygen reactive species and skin fibroblast stimulation of Couroupita guianensis leaf extracts. Natural Product Research, 26(4), 314-322. https://doi.org/10.1080/14786411003752094
Mazumdar, D. B. C., & Majumdar, K. (2001). Methods of physico-chemical analysis of fruits. Daya Publishing House, India. 112-115.
Miller, W. R., & McDonald, R. E. (1993). Quality of two Florida blueberry cultivars after packaging and storage. HortScience, 28(2), 144-147. https://doi.org/10.21273/HORTSCI.28.2.144
Odeyemi, O. M., Kitinoja, L, Dubey, N., Musanase, S., & Gill, G. S. (2021). Preliminary study on improved postharvest practices for tomato loss reduction in Nigeria, Rwanda and India. African Journal of Science, Technolology, Innovation and Development, 14(6), 1500-1505. https://doi.org/10.1080/20421338.2021.1961986
Pandurangan, P., Sahadeven, M., Sunkar, S., & Dhana, S. K. N. M. (2018). Comparative analysis of biochemical compounds of leaf, flower and fruit of Couroupita guianensis and synthesis of silver nanoparticles. Pharmacognosy Journal, 10(2), 315-323. http://doi.org/10.5530/pj.2018.2.55
Qin, Y. Y., Liu, D., Wu, Y., Yuan, M. L., Li, L., & Yang, J. Y. (2015). Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 99, 73-79. https://doi.org/10.1016/j.postharvbio.2014.07.018
 Raveendra, B., Kiran, S., Kumari, V., Jyothi, R., & Bhavani, D. (2016). UV Spectrophotometric method for the estimation of roflumilast in human serum. Pharmaceutica Analitica Acta, 7(6),1-4. http://doi.org/10.4172/2153-2435.1000487
Saini, R. S., Sharma, K. D., Dhankhar, O. P., & Kaushik, R. A. (2006). Laboratory manuals for analytical techniques in horticulture. Agrobios Publishing Co. Ltd., India. 5-16.
Sinha, S. R., Singha, A., Faruquee, M., Jiku, M. A. S., Rahman, M. A., Alam, M. A., & Kader, M. A. (2019). Post-harvest assessment of fruit quality and shelf life of two elite tomato varieties cultivated in Bangladesh. Bulletin of the National Research Centre, 43, 185. https://doi.org/10.1186/s42269-019-0232-5
Suslow, T. V. (2004). Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. ANR Publication No. 8149; University of California Davis: Oakland, CA, USA. 1-5. 
Tang, J., Chen, H., Lin, H., Hung, Y. C., Xie, H., & Chen, Y. (2021). Acidic electrolyzed water treatment delayed fruit disease development of harvested longans through inducing the disease resistance and maintaining the ROS metabolism systems. Postharvest Biology and Technology, 171, 111349. https://doi.org/10.1016/j.postharvbio.2020.111349
Vasquez-Lopez, A., Villarreal-Barajas, T., & Rodriguez-Ortiz, G. (2016). Effectiveness of neutral electrolyzed water on incidence of fungal rot on tomato fruits (Solanum lycopersicum L.). Journal of Food Protection, 79(10),1802-1806. https://doi.org/10.4315/0362-028x.jfp-15-494
Wang, C., Gao, Y., Tao, Y., Wu, X. Z., & Zhibo, C. (2017). Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage. Innovative Food Science and Emerging Technologies, 41, 397-403. https://doi.org/10.1016/j.ifset.2017.04.007
Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. https://doi.org/10.1016/j.postharvbio.2016.05.012
Workneh, T. S., Osthoff, G., & Steyn, M. (2012). Effects of preharvest treatment, disinfections, packaging and storage environment on quality of tomato. Journal of Food Science and Technology, 49(6), 685-694. https://doi.org/10.1007%2Fs13197-011-0391-3
Xu, F. X., Wang, S. H., Xu, J., Liu, S. Y., & Li, G.D. (2016). Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biology and Technology, 117, 125-131. https://doi.org/10.1016/j.postharvbio.2016.01.012
YAS. (2020). Yearbook of Agricultural Statistics. Statistics Division, ministry of planning. Government of the People’s Republic of Bangladesh. 298.
Zhang, W., Cao, J., & Jiang, W. (2021). Application of electrolyzed water in postharvest fruits and vegetables storage; A review. Trends in Food Science and technology, 114, 599-607. https://doi.org/10.1016/j.tifs.2021.06.005