Document Type : Original Article

Authors

Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran

10.22077/jhpr.2024.8079.1416

Abstract

Purpose: Grapes (Vitis vinifera L.) are among the most significant agricultural products cultivated in various regions of Iran, boasting high nutritional value. This study focuses on assessing the genetic diversity of grape genotypes from vineyards in the West Azarbaijan province.  Drought is an important environmental factor that limits plant growth and production. Given the abundant grape germplasm in Iran, there is potential to select cultivars and high-yielding genotypes possessing valuable genetic traits to use as resilient bases in commercial grape cultivars. Research Method: This research involved the evaluation of 16 grape genotypes in a single phase. For this purpose, 16 grape genotypes were grouped and compared in various dry conditions including (PEG0%, PEG2% and PEG4%). Findings: The results showed that vegetative traits, relative water content, and membrane stability decreased in all cultivars, but this decline was less pronounced in the »Garashire, Gezel, and Fakhri genotypes«. Protein content and the activity of protective enzymes in the roots and leaves increased significantly across all 16 genotypes, with particularly notable levels observed in the »Garashire genotype«. Drought stress had a marked effect on the accumulation of malondialdehyde and hydrogen peroxide in the Asgari and Reddish Tabriz genotypes. The levels of these compounds were higher in these genotypes compared to others, indicating increased lipid peroxidation and reduced stability against drought. Research limitations: There was no limitation. Originality/Value: The adverse effects of drought were more pronounced at the end of the stress period, especially under a high dose of PEG (4%). Overall, the »Garashire genotype« exhibited the highest tolerance, while the Asgari genotype was the most sensitive to drought.

Keywords

Main Subjects

Abbaspour, N., Kaiser, B., & Tyerman, S. (2013). Chloride transport and compartmentation within main and lateral roots of two grapevine rootstocks differing in salt tolerance. Trees, 27(5), 1317-1325. https://doi.org/10.1007/s00468-013-0880-2.
Akram, M. T., Qadri, R., Khan, M. A., Hafiz, I. A., Nisar, N., Khan, M. M., & Hussain, K. (2021). Morpho phenological characterization of grape (Vitis vinifera L.) germplasm grown in northern zones of Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 58(4), 1223-1236.  https://doi.org/10.21162/PAKJAS/21.91.
Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12), 1337-1344.  https://doi.org/10.1046/j.1365-3040.2001.00778.x
Al-Tabbal, J.A., Al-Mefleh, N.K., Al-Zboon, K.K., & Tadros, M.J. (2020). Effects of volcanic zeolite tuff on olive (Olea europaea L.) growth and soil chemistry under a constant water level: five years’ monitoring experience. Environment and Natural Resources Journal, 18(1), 44-54. https://doi.org/10.32526/ennrj.18.1.2020.05.
Altinci, N.T., & Cangi, R. (2019). Drought tolerance of some wine grape cultivars under in vitro conditions. Journal of Agricultural Faculty of Gaziosmanpasa University, 2(2), 145-151.  https://doi.org/10.13002/jafag4633.
Amiri, M. J., & Eslamian, S. S. (2010). Investigation of climate change in Iran. Journal of Environmental Science and Technology, 3(4), 208-216.  https://doi.org/10.3923/jest.2010.208.216.
Augé, R.M., Stodola, A.J.W., Moore, J.L., Klingeman, W.E., & Duan, X. (2003). Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Horticulturae, 98(4), 511-516.  https://doi.org/10.1016/S0304-4238(03)00037-2.
Asadi, W., Gholami, M., Rasouli, M., & Maleki, M. (2019). Effect of drought stress on some physiological traits in three varieties of grapes (Vitis vinifera L.). Isfahan University of Technology. Journal of Crop Production and Processing, 9(3), 45-59. https://doi.org/10.47176/jcpp.9.3.24642.
Asadi, W., Rasouli, M., Gholami, M., & Maleki, M. (2018). Study of some morphological and physiological traits of four varieties grapes (Vitis vinifera L.) under water stress.‏ Iranian Journal of Horticultural Science, 48(4), 977-990. https://doi.org/10.22059/ijhs.2017.237072.1279.
Bigdeloo, V., Soleimani, A., Abdollahi, H., & Bahari A, (2018). Comparative study of two pear cultivars to PEG-induced osmotic stress. Journal of Plant Physiology and Breeding, 8(1), 89-99.  https://doi.org/10.22034/jppb.2018.9501.
Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248–254.  https://doi.org/10.1016/0003-2697(76)90527-3.
Chance, B., Maehly, A. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 1, 764-75.  https://doi.org/10.1002/9780470110171.ch14.
Darko, E., Végh, B., Khalil, R., Marček, T., Szalai, G., Pál, M., & Janda, T. (2019). Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE, 14(12), e0226151. https://doi.org/10.1371/journal.pone.0226151.
Deka, D., Singh, A.K. & Singh, A.K. (2018). Effect of drought stress on crop plants with special reference to drought avoidance and tolerance mechanisms: A Review. International Journal of Current Microbiology and Applied Sciences, 7(9), 2703-2721. https://doi.org/10.20546/ijcmas.2018.709.336.
Doulati Baneh, H. (2015). Grapes (comprehensive management of cultivation, breeding, production and processing). Kurdistan University Press. 674 pages.  https://doi.org/10.18699/VJ21.045.
Elmaghrabi, A. M., Rogers, H. J., Francis, D., & Ochatt, S. J. (2017). PEG induces high expression of the cell cycle checkpoint gene WEE1 in embryogenic callus of Medicago truncatula: Potential link between cell cycle checkpoint regulation and osmotic stress. Frontiers in Plant Science, 8, 1479.  https://doi.org/10.3389/fpls.2017.01479.
Fahim, S., Ghanbari, A., Naji, A.M., Shokohian, A.A., Maleki Lajayer, H., Gohari, G. & Hano, C. (2022). Multivariate discrimination of some grapevine cultivars under drought stress in Iran. Horticulturae, 8(10), 871. https://doi.org/10.3390/horticulturae8100871.
Fayek, M.A., Rashedy, A.A. & Mohamed Ali, A.E. (2022). Alleviating the adverse effects of deficit irrigation in Flame seedless grapevine via Paulsen interstock. Revista Brasileira de Fruticultura, 44(1), 1-11. https://doi.org/10.1590/0100-29452022839.
Haddadinejad, M., Ebadi, A., Moghaddam, M. R. F., & Nejatian, M. A. (2013). Primary morphological screening of 698 grapevine genotypes to select drought tolerant rootstocks. Iranian Journal of Horticultural Science, 44(2), 193-207.  https://doi.org/ 10.5555/20133313750.
Hnilickova, H., Hnilicka, F., Orsak, M. & Hejnak, V. (2018). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment, 62(2), 314-320. https://doi.org/10.17221/620/2018-PSE.
Jahnke, G., Nagy, Z. A., Koltai, G., Oláh, R., & Májer, J. (2021). Morphological, phenological and molecular diversity of woodland grape (Vitis sylvestris gmel.) genotypes from the Szigetköz, Hungary. Mitt. Klosterneubg, 71(1), 90-98. https://doi.org/10.13140/RG.2.2.16488.19207.
Karabal, E., Yücel, M. & Öktem, H.A., (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6), 925-933. https://doi.org/10.1016/S0168-9452(03)00067-0.
Karimi, S., Hojati, S.h., Eshghi, S., Nazary Moghaddam, R., & Jandoust, S., (2012). Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Scientia Horticulturae, 137, 95-99. https://doi.org/10.1016/j.scienta.2012.01.018 .
Kazemi, M., Rasouli, M., Maleki, M., Abdoli, M., & Rostami -Borujeni, M. (2022). Evaluation of phenotypic and genetic diversity of some native and foreign grapevine (Vitis vinifera L.) cultivars and genotypes based on morphological, phenological, biochemical and fruit characteristics (Case study: Khuzestan province, south-west of Iran). Journal of Horticulture and Postharvest Research, 7(4), 361-388. https://doi.org/10.22077/jhpr.2024.7550.1377.
Keivanfar, S., Fotouhi Ghazvini, R., Ghasemnezhad, M., Mousavi, A. & Khaledian, M.R. (2019). Effects of regulated deficit irrigation and superabsorbent polymer on fruit yield and quality of Granny Smith apple. Agriculturae Conspectus Scientificus, 84(4), 383-389. https://doi.org/hrcak.srce.hr/228927.
Keller, M., & Tarara, J. M. (2010). Warm spring temperatures induce persistent season-long changes in shoot development in grapevines. Annals of Botany, 106(1), 131-141. https://doi.org/10.1093/aob/mcq091.
Kent, L.M., & Lauchli, A. (1985). Germination and seedling growth of cotton: salinity-calcium interactions. Plant, Cell and Environment, 8(2), 155-159. https://doi.org/10.1111/j.1365-3040.1985.tb01223.x.
Khalil, H.A., & Badr Eldin, R.M. (2021). Chitosan improves morphological and physiological attributes of grapevines under deficit irrigation conditions. Journal of Horticultural Research, 29(1), 9-22.  https://doi.org/10.2478/johr-2021-0003.
Kramer, P.J. (1983). Water Relations of Plants. Academic Press, Inc., USA.
Kupe, M., Ercisli, S., Karatas, N., Skrovankova, S., Mlcek, J., Ondrasova, M., & Snopek, L. (2021). Some important food quality traits of Autochthonous grape cultivars. Journal of Food Quality, 16, 1-8.  https://doi.org/10.1155/2021/9918529.
Levitt, J. (1980). Response of plant to environmental stresses: water, radiation, salt, and other stress. Academic Press, USA, 607 p.  https://doi.org//10.1016/B978-0-12-445501-6.50016-6
Liu, J., Xie, X., Du, J., Sun, J., & Bai, X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Scientia Horticulturae, 115(2), 190-195.  https://doi.org/10.1071/FP13340.
Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y. & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 135, 99-110. https://doi.org/10.1016/j.plaphy.2018.11.037.
Mirfatah, S.M.M., Rasouli, M., Gholami, M. & Mirzakhani, A., (2024a). Phenotypic diversity of some Iranian grape cultivars and genotypes (Vitis vinifera L.) using morpho-phenological, bunch and berry traits. Journal of Horticulture and Postharvest Research, 7(2), 115-140. https://doi.org/10.22077/jhpr.2024.7165.1355.
Mirfatah, S.M.M., Rasouli, M., Gholami, M. & Mirzakhani, A. (2024b). Physiochemical and molecular response of the grafted ‘Bidaneh Ghermez’ grape cultivar on native rootstocks to identify tolerant combination to drought stress in vineyard conditions. Russian Journal of Plant Physiology, 71(4), 124.  https://doi.org/10.1134/S1021443724605688.
Mohsen, A.T., Stino, R., Abd Allatif, A., & Zaid, N. (2020). In vitro evaluation of some grapevine rootstocks grown under drought stress. Plant Archives, 20(1), 1029-1034.
Noctor, G., & Foyer., C.H. (2016). Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 171(3), 1581-1592. https://doi.org/10.1104/pp.16.00346.
Oukabli, A., Mekaoui, A., Ibnouali-El-Aloui, M., & Bari, A., (2008). Contribution to identification of fig (Ficus carica) genotypes tolerant to drought. Acta Horticulturae, 798(10), 87-93. https://doi.org/10.17660/ActaHortic.2008.798.10.
Pontin, M., Murcia, G., Bottini, R., Fontana, A., Bolcato, L. & Piccoli, P. (2021). Nitric oxide and abscisic acid regulate osmoprotective and antioxidative mechanisms related to water stress tolerance of grapevines. Australian Journal of Grape and Wine Research, 3, 392-405. https://doi.org/10.1111/ajgw.12485.
Rai, M.K., Kalia, R.K., Singh R., Gangola, M.P., & Dhawana AK., (2011). Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89-98. https://doi.org/10.1016/j.envexpbot.2010.10.021.
Rao, K.V.M., & Sresty, T.V., (2000). Antioxidative parameters parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157(8), 113–128. https://doi.org/10.1016/S0168-9452(00)00273-9.
Rasouli, M., Gholami, M., & Alifar, M. (2015). Grape varieties with emphasis on classical and molecular methods. Malayer University Publications, Center for Scientific Publications, Second Edition, 624 Pages. https://doi.org/10.22077/jhpr.2024.7165.1355.
Rasouli, M., Mohammadparast, B., & Eyni, M. (2014). Study on phenotypic diversity of some grape (Vitis vinifera L.) cultivars and genotypes using morphological traits in Hamedan Province. Applied Crop Breeding, 2(2), 241-260.  https://doi.org/10.22077/jhpr.2024.7165.1355.
Razi, M., Darvishzadeh, R., Doulati Baneh, H., Amiri, M. E., & Martinez-Gomez, P. (2021). Estimating breeding value of pomological traits in grape cultivars based on REMAP molecular markers. Plant Productions, 44(4), 515-530. https://doi.org/10.22055/ppd.2020.34003.1925.
Rumbaugh, M.D., & Johnson, D.A., (1981). Screening alfalfa germplasm for seedling drought resistance. Crop Science, 21, 704-713. https://doi.org/10.2135/cropsci1981.0011183X002100050020x.
Sairam, R.K., (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 584-593.
Sarvari, M., Darvishzadeh, R., Najafzadeh, R., & Hatami Maleki., (2017). Physio-biochemical and enzymatic responses of sunflower to drought stress. Journal of Plant Physiology and Breeding, 7(1), 105-119.
Shams, M., Ekinci, M., Ors, S., Turan, M.Agar, G.,Kul, R., Yildirim, E., (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25, 1149–1161. https://doi.org/10.1007/s12298-019-00692-2.
Shirani Bidabadi, S., Sabbatini, P. & VanderWeide, J. (2023). Iron oxide (Fe2O3) nanoparticles alleviate PEG-simulated drought stress in grape (Vitis vinifera L.) plants by regulating leaf antioxidants. Scientia Horticulturae, 312, 111847. https://doi.org/10.1016/j.scienta.2023.111847.
Siaga, E., Maharijaya, A., & Rahayu, M. S. (2016). Plant growth of eggplant (Solanum melongena L.) in vitro in drought stress polyethylene glycol (PEG). BIOVALENTIA: Biological Research Journal, 2(1), 10-17. https://doi.org/10.24233/BIOV.2.1.2016.29.
Ulusu, Y., Öztürk, L. & Elmastaş, M., (2017). Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russian Journal of Plant Physiology, 64(6), 883-888.  https://doi.org/10.1134/S1021443717060139.
Yan, W., Zhong, Y. & Shangguan, Z. (2016). A meta-analysis of leaf gas Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agricultural and Forestry, 38, 739-744. https://doi.org/10.1038/srep20917.
Zahedi, M., Rasouli, M., Imani, A., Khademi, O., & Jari, S. K., (2023). Evaluation of quantitative, qualitative, and biochemical traits of almond offspring from controlled reciprocal crosses between ‘Mamaei’ and ‘Marcona’ Cultivars. Erwerbs-Obstbau, 65(5), 1525-1543. https://doi.org/10.1007/s10341-023-00900-0.
Zeng, G., Gao, F., Li, C., Li, D. & Xi, Z., (2022). Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: Morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant Physiology and Biochemistry, 184, 98-111. https://doi.org/10.1016/j.plaphy.2022.05.019.