Document Type : Original Article

Authors

1 Assistant Prof, Department of Horticultural Science and Special Plants Regional Research centre, College of Agriculture, University of Birjand, Iran

2 Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Iran.

Abstract

Purpose: The objective of this study was to establish equations to estimate leaf area (LA) using length (L), width (W), fresh weight (FW) and dry weight (DW), length × width (L×W), width/length (W/L) of cress leaves as a leafy vegetable and radish  leaves as a root vegetable. Research method: An experiment was carried out under greenhouse conditions to study the relationship between leaf dimension and weight with LA of these two vegetable plants. Observed LA was obtained by an automatic measuring device and leaf dimensions were measured by a ruler. Regression analyses of LA versus L, W, FW, DW, L×W and W/L led several models that could be used for estimating the area of individual cress and radish leaves. Findings: A linear model employing FW as an independent variable [LA=0.295 (Fresh W.)+ 1.430] resulted the most accurate estimate (R2 = 0.912, RMSE = 1.52) of cress LA. For radish, a linear model using W as an independent variable [LA=22.50 (W) + 7.46] showed the most accuracy (R2 = 0.874, RMSE = 11.26) for estimating LA. Validation of the regression models showed that the correlation between measured and simulated values using these equations was quite acceptable for radish and cress (R2 = 0.922, 0.876), respectively. Research limitations: Evaluation of more leafy vegetables possibly had better results. Originality/Value: The results showed that cress and radish LA could be monitored quickly, accurately, and non-destructively by using the leaf FW and leaf W models, respectively.

Keywords

Main Subjects

Allen, O.B., & Raktoe, B.L. (1981). Accuracy analysis with special reference to the predictions of grassland yield. Biometrical Journal, 23(4), 371-388. doi.org/10.1002/bimj.4710230404.
Aminifard, M.H., Khayyat, M., & Bayat, H. (2016). Estimation of leaf area in coneflower (Echinacea purpurea L.) using independent variables. Journal of Ornamental Plant, 6, 245-251.
Antunes, W.C., Pompelli, M.F., Carretero, D.M., & DaMatta, F.M. (2008). Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33-40. doi: 10.1111/j.1744-7348.2008.00235.x.
Blanco, F.F., & Folegatti. M.V. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62, 305-309. doi.org/10.1590/S0103.
Busato, C., Fontes, P.C.R., Braun, H., & Bustao. C.C.M. (2010). Estimativa da área foliar da batateira, cultivar Atlantic, utilizando dimensões lineares. Revista Ciencia Agronomica, 41, 702-708. doi.org/10.1590/1678-4499.0179. 
Cho, Y.Y., Oh, S., Oh, M.M., & Son, J.E. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae, 111, 330-334. doi:10.1016/j.scienta.2006.12.028.
Cristofori, V., Fallovo, C., Mendoza-De Gyves, E., Rivera, C.M., Bignami, C., & Rouphael, Y.   (2008). Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L.f) based on leaf length and width measurement. European Journal of Horticultural Science, 73, 216-221.
Cristofori, V., Rouphael, Y., Mendoza-de Gyves, E., & Bignami. C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113, 221-225. doi: 10.1016/j.scienta.2007.02.006.
De Carvalho, J.O., Toebe, M., Tartaglia, F.L., Banderia, C.T. &Tambara, A.L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Annals of the Brazilian Academy of Sciences, 89(3), 1851-1868. doi.org/10.1590/0001-3765201720170077.
Demarty, J., Chevallier, F., Friend, A.D., Viovy, N., Shilong , P., & Ciais, P. (2007). Assimilation of global modis leaf area index retrievals within a terrestrial biosphere model. Geophysical Research Letters, 34, L15402. doi.org/10.1029/2007GL030014.
Dent, J.B., & Blackie, M.J. 1979. Systems Simulation in Agriculture. London: Applied Science Publishers, 180 pp.
Gill, J. L. (1986). Outliers, and influence in multiple regression. Journal of Animal Breeding and Genetics, 103: 161-175. doi.org/10.1111/j.1439-0388.1986.tb00079.x.
Janssen, P.H.M. & Heuberger, P.S.C. (1995). Calibration of process-oriented models. Ecological Modeling, 83 (1), 55-56. doi: 10.1016/0304-3800(95)00084-9.
Kandiannan, K., Parthasarathy, Y., Krishnamurthy, K.S., Thankamani, C.K., & Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120, 532-537. doi: 10.1016/j.scienta.2008.11.037.
Kumar, R. (2009). Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Scientia Horticulturae, 122, 142-145. doi.org/10.1016/j.scienta.2009.03.019.
Kvet, J., & Marshall. J.K. (1971). Assessment of leaf area and other assimilating plant surfaces. P. 517–555. In: Z. Sestak, J. Catsky, and P.G. Jarvis (eds.). Plant photosynthetic production. Manual of methods. Dr. W. Junk N.V., The Hague, Netherlands.
Lee, J.H., & Heuvelink, E. (2003). Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum. Annals of Botany, 91, 319-327. doi.org/10.1093/aob/mcg015.
Lieth, J.H., & Pacian, C.C. (1991). A simulation model for the growth and development of flowering rose shoots. Scientia Horticulturae, 46, 109-128.doi.org/10.1016/0304-4238(91)90097-I.
Lu, H.Y., Lu, M.L., Wei, C.T., & Chan, L.F. (2004). Comparison of different models for nondestructive leaf area estimation in taro. Agronomy Journal, 96, 448-453. doi:10.2134/agronj2004.4480.
Marquardt, D.W. (1970). Generalized inverse, ridge regression and biased linear estimation. Technometrics, 12, 591-612. doi: 10.2307/1267205.
Nesmith, D.S. (1992). Estimating summer squash leaf area non-destructively, Horticultural Science, 27(1), 27- 77.
Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113, 322-328.doi.org/10.1016/j.scienta.2007.04.003.
Perry, L. M. (1980). Medicinal plants of east and southeast Asia. Cambridge, MA: MIT Press.
Ramesh, K., Singh, V., & Megeji, N.W. (2007). Cultivation  of  stevia (Stevia  rebaudiana): a  comprehensive review. Advances Agronomy, 89,137-177.
Robbins, N.S., & Pharr, D.M. (1987). Leaf area prediction models for cucumber from linear measurements. Horticultural Science, 22 (6), 1264-1266.
Rouphael, Y., Rivera, C. M., Cardarelli, M., Fanasca, S., & Colla, G. (2006). Leaf area estimation from linear measurements in zucchini plants of different ages. The Journal of Horticultural Science and Biotechnology, 81(2), 238-241. doi.org/10.1080/14620316.2006.11512056.
Rouphael, Y., Colla, G., Fanasca, S., & Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45, 306-308. doi: 10.1007/s11099-007-0051-z.
Rouphael, Y., Mouneimne, A.H., Ismail, A., Mendoza-de Gyves, E., Rivera, C.M., & Cola, G. (2010). Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica, 48, 9-15. doi:10.1007/s11099-010-0003-x.
Schwab, N.T., Straeck, N.A., Rehbein, A., Ribeiro, B., Ulhmann, L.O., Angner, J.A., & Becker, C.C. (2014). Linear dimensions of the leaf and its use in the determination of the vertical leaf profile of gladiolus. Bragantia, 73, 97-105. doi.org/10.1590/brag.2014.014.
Tsialtas, J.T., & Maslaris, N. (2005). Leaf area estimation in a sugar beet cultivar by linear models. Photosynthetica, 43(3), 477-479. doi:10.1007/s11099-005-0077-z.
Willmott, C.J. (1981). On the validation of models. Physical Geography, 2 (1), 184-194.
Xue, C.X. (2001). The encyclopedia of vegetables and fruits in Taiwan. Taipei: Taiwan Pu- Lu Publ. Co. (in Chinese).