Original Article
Tropical Fruits
Aurelice Oliveira; Monica Maria Lopes; Kellina Oliveira de Souza; Luciana de Siqueira Oliveira; Carlos Farley Moura; Maria Raquel de Miranda
Abstract
Purpose: The objective of this work was to evaluate the effects of two systems of cultivation on the banana crop (Musa spp.) in the postharvest quality, bioactive compounds and phenylalanine ammonia-lyase during ripening process. Research method: Changes in physicochemical parameters, non-antioxidant, ...
Read More
Purpose: The objective of this work was to evaluate the effects of two systems of cultivation on the banana crop (Musa spp.) in the postharvest quality, bioactive compounds and phenylalanine ammonia-lyase during ripening process. Research method: Changes in physicochemical parameters, non-antioxidant, phenylalanine ammonia lyase (PAL) activity and oxidative markers were evaluated in banana cv. Prata-Anã from organic and conventional systems at three ripening stages: unripe, breaker and ripe. Main findings: The weight of conventional fruit was 48% greater at the ripe stage. The fruit size was reduced in fruits from organic farming while titratable acidity and the soluble solids content were respectively 82% and 58% higher at breaker stage in conventional bananas. The organic bananas have an increase of 58% in the phenolics at the unripe stage. The PAL activity was observed throughout banana development from organic farming, however the same was not observed for the conventional farming. Dismutase superoxide activity was also dramatically higher in matures and ripe fruits from organic farming. The lipid peroxidation degree of the cell membrane was 40% higher in ripe bananas for both systems. Research limitations: No limitations were founded, since the methods were well established. Originality/Value: Our observations suggest that banana fruits presented little changes in the function of farming conditions with an accumulation of specific compounds in determined stages of ripening without remarkable difference among systems of cultivation.
Original Article
Plant Nutrition
Sally Wilkinson; Anna Weston; David Marks
Abstract
Purpose: Supplying plants with nitrogen in ammonium nitrate- or urea-based fertiliser is wasteful: much is degraded before acquisition, releasing environmental pollutants. Preventing urea degradation can reduce pollution and improve crop nitrogen use efficiency. We investigate benefits to ureic stabilisation, ...
Read More
Purpose: Supplying plants with nitrogen in ammonium nitrate- or urea-based fertiliser is wasteful: much is degraded before acquisition, releasing environmental pollutants. Preventing urea degradation can reduce pollution and improve crop nitrogen use efficiency. We investigate benefits to ureic stabilisation, on flowering and stress tolerance, as organic nitrogen sources favourably alter biomass partitioning in this regard. Research Method: We test effects of adding chemically stabilised urea to soil, on the physical form and flowering of containerised, greenhouse-grown pelargonium, petunia, pansy and marigold, when transplanting seedlings to larger pots. Efficacies of stabilised urea, non-stabilised urea and industry standard fertiliser are compared under identical total nitrogen supply. The significance of treatment differences is calculated using a one-tailed t-test. Findings: Development is favourably altered by ureic stabilisation. Earliest changes measured are increased root lengths, leaf growth rates and chlorophyll concentrations. Plants then develop more shoots and 25-130% more flowers. Improvements arise partially through increased nitrogen longevity in soil, and partially through positive effects of urea itself on biomass partitioning between organs, and on plant physiology; giving rise to improved commercial attributes (more branches and flowers) and tolerance to stress (more root, less apical dominance, more chlorophyll). Research Limitations: Further research could measure leachate nitrogen content, and compare different methods of ureic stabilisation in more crops. Originality/Value: Urea stabilisation can increase fruit and flower yields, whilst reducing vulnerability to erratic climates, and fertiliser-derived pollution. We propose that urea’s effectiveness arises because plants have evolved strategies to proliferate whilst competing with micro-organisms for organic nitrogen.
Original Article
Postharvest Biology and Technology
Maryam Dehestani-Ardakani; Younes Mostofi
Abstract
Purpose: Chitosan, a natural biopolymer with antifungal and eliciting properties is able to reduce postharvest decay of table grapes. Anti-fungal and anti-microbial effects of essential oils are the result of many compounds acting synergistically. In this study, the effectiveness of Thymus essential ...
Read More
Purpose: Chitosan, a natural biopolymer with antifungal and eliciting properties is able to reduce postharvest decay of table grapes. Anti-fungal and anti-microbial effects of essential oils are the result of many compounds acting synergistically. In this study, the effectiveness of Thymus essential oil (TEO) and chitosan to control postharvest decay and quality of ‘Shahroudi’ table grape was investigated. Research Method: Grapes treated by 0.5% and 1% (w/v) solution of chitosan, 150 and 300 µl l-1 Thymus essential oil and their combination (untreated fruit were as control). At first chitosan solution prepared then Thymus essential oil was added it in combination solution. Harvested grapes were packed in 200g bags and stored at 0±2 ◦C and 90% ± 5 RH for 90 days. Findings: Differences in weight loss, color change, ripening, sensory quality and decay between grapes treated with chitosan and TEO and control fruit suggested that TEO and chitosan were both suitable coatings. Moreover, the sensory analyses revealed beneficial effects in terms of delaying rachis browning and dehydration and maintenance of the visual characteristics of the grape without detrimental effects on taste or flavors. Research limitations: It had no limitation to report. Originality/Value: TEO and chitosan might have good effects in reducing postharvest fungal rot and maintaining the quality of ‘Shahroudi’ table grapes which proved to be much more effective than TEO.
Original Article
Plant Breeding and Biotechnology
Chadha Ayed; Najla Mezghani; Awatef Rhimi; Bouthaina AL Mohandes Dridi
Abstract
Purpose: Despite the significance of garlic as a food product and high annual income, until now there are no local commercialized Tunisian cultivars with registered names, which lead to the lack of recommended varieties of high yielding. This work is aimed to create the first garlic gene bank collection ...
Read More
Purpose: Despite the significance of garlic as a food product and high annual income, until now there are no local commercialized Tunisian cultivars with registered names, which lead to the lack of recommended varieties of high yielding. This work is aimed to create the first garlic gene bank collection in Tunisia, evaluate the variation, identify yield related traits and structure genetic diversity among them. Research method: Thirty six local garlic landraces from the main production regions of Tunisia were collected and recorded in the National Gene Bank of Tunisia database, then grown in a gene bank field for multiplication. The phenotypic diversity was conducted on the basis of fourteen quantitative characteristics add to flowering ability. Findings: High diversity among Tunisian garlic landraces was detected. The bulb weight and bulb diameter explain the most significant variation of the yield. The cluster analysis sorted the 36 genotypes into three main groups as cluster 1 (11 accessions), cluster 2 (20 accessions), and cluster 3 (5 accessions). However, the grouping of genotypes did not correspond with their geographic origin. The highest genetic distance was reported between NGBTUN442 and NGBTUN452, however NGBTUN429 and NGBTUN434 found to be most similar with the lowest dissimilarity. Research limitation: Morphological traits need to be investigated overtime. Originality/Value: This study is interesting since it presents the first creation of the garlic gene bank in Tunisia. The results will provide basis information for the efficient use of the local garlic germplasm and help breeders to easily select out the desirable materials.
Original Article
Postharvest Biology and Technology
Md. Mehedi Hafiz; Md. Hossain
Abstract
Purpose: Ineffective storage technology is the major concern for the high level of postharvest loss in Bangladesh. So, aiming to pick out the promising storage strategy of mango, this study was conducted. Research method: The mangoes cv. Amrapali were kept under two storage conditions viz., ambient and ...
Read More
Purpose: Ineffective storage technology is the major concern for the high level of postharvest loss in Bangladesh. So, aiming to pick out the promising storage strategy of mango, this study was conducted. Research method: The mangoes cv. Amrapali were kept under two storage conditions viz., ambient and refrigerated (13 ± 2 °C and 15-20% RH) storage having five postharvest treatments including untreated control, perforated polyethylene bag, unperforated polyethylene bag, chitosan coating and edible oil (soybean) coating. Findings: The effect of storage conditions and postharvest treatments were found highly significant on the chemical parameters. Unperforated polyethylene bag and oil coating showed the highest titratable acidity (0.51 and 0.50%), the highest vitamin C (22.43 and 22.63 mg/100 g), and the lowest TSS (8.90 and 10.00%) under refrigerated condition and control showed the lowest titratable acidity (0.10%), the lowest vitamin C (12.50 mg/100 g), and the highest TSS (27.03%) under ambient condition at 9 days after storage. Unperforated polyethylene bag and oil coating under refrigerated conditions kept mangoes edible up to 9 days after storage. But after certain days of storage, unperforated polyethylene bag and oil coating developed off-flavor making mangoes inedible. Research limitations: More research should be conducted using other mango cultivars. Originality/Value: The perforated polyethylene bag under refrigerated condition showed a slower change of chemical parameters, simultaneously resulting in the longest shelf life (27 days) without producing any unwanted flavor and taste indicating efficient postharvest storage.
Original Article
Plant Nutrition
Isam Al-madhagi
Abstract
Purpose: Cucumber is a very sensitive plant even under standard conditions, and its fruit, reaches the harvest stage rapidly. In addition to, in Yemen a lot of fertilizer and fungicide chemical have used during the production. For this purpose, effect of exogenously applied of bio-stimulators (humic ...
Read More
Purpose: Cucumber is a very sensitive plant even under standard conditions, and its fruit, reaches the harvest stage rapidly. In addition to, in Yemen a lot of fertilizer and fungicide chemical have used during the production. For this purpose, effect of exogenously applied of bio-stimulators (humic acid and yeast) was examined. Research method: Cucumber HATEM F1 Cultivar was used as plant material. Plants were grown during the clean horticulture practices under polyethylene greenhouse condition. The experiment designed as completely randomized blocks design (RCBD). Humic acid at 0, 100 and 300 mg L-1, as well as yeast at 0, 2000 and 4000 mg L-1, sprayed once alone or in combination. Findings: As compared to control, humic at 100 mg L-1 alone increased the yield about 14.88%. Yeast at 4000 mg L-1 alone offered the significantly (P≤0.05) highest of the plant (88.2%) and higher yield (91.00%). Yeast at 2000 mg L-1 significantly increased leaves DM% (26.6%). Yeast significantly increases chlorophyll SPAD. The interaction of 100 humic × 4000 mg L-1 of yeast increased the yield by 168.26% than the control. Research limitations: Further studies were needed to clarify the interaction effect of both substances by using the higher modern technique. Originality/Value: The finding obtained from this study could probably use to manage and successfully applied to the production of organic cucumber. Moreover, it could be suggested that the combination between yeast at 4000 mg L-1 and humic at 100 mg L-1 is the best for the productivity of cucumber.
Original Article
Olericulture
Mohmmad Hossein Aminifard; Hassan Bayat; Mehdi Khayyat
Abstract
Purpose: The objective of this study was to establish equations to estimate leaf area (LA) using length (L), width (W), fresh weight (FW) and dry weight (DW), length × width (L×W), width/length (W/L) of cress leaves as a leafy vegetable and radish leaves as a root vegetable. Research ...
Read More
Purpose: The objective of this study was to establish equations to estimate leaf area (LA) using length (L), width (W), fresh weight (FW) and dry weight (DW), length × width (L×W), width/length (W/L) of cress leaves as a leafy vegetable and radish leaves as a root vegetable. Research method: An experiment was carried out under greenhouse conditions to study the relationship between leaf dimension and weight with LA of these two vegetable plants. Observed LA was obtained by an automatic measuring device and leaf dimensions were measured by a ruler. Regression analyses of LA versus L, W, FW, DW, L×W and W/L led several models that could be used for estimating the area of individual cress and radish leaves. Findings: A linear model employing FW as an independent variable [LA=0.295 (Fresh W.)+ 1.430] resulted the most accurate estimate (R2 = 0.912, RMSE = 1.52) of cress LA. For radish, a linear model using W as an independent variable [LA=22.50 (W) + 7.46] showed the most accuracy (R2 = 0.874, RMSE = 11.26) for estimating LA. Validation of the regression models showed that the correlation between measured and simulated values using these equations was quite acceptable for radish and cress (R2 = 0.922, 0.876), respectively. Research limitations: Evaluation of more leafy vegetables possibly had better results. Originality/Value: The results showed that cress and radish LA could be monitored quickly, accurately, and non-destructively by using the leaf FW and leaf W models, respectively.